diff --git a/static/img/people-detect-4.png b/static/img/people-detect-4.png new file mode 100644 index 0000000..e8f0ac1 Binary files /dev/null and b/static/img/people-detect-4.png differ diff --git a/static/img/people-detect-5.png b/static/img/people-detect-5.png new file mode 100644 index 0000000..7ef2fb0 Binary files /dev/null and b/static/img/people-detect-5.png differ diff --git a/static/pages/Detect-people-with-a-RaspberryPi-a-thermal-camera-Platypush-and-a-pinch-of-machine-learning.md b/static/pages/Detect-people-with-a-RaspberryPi-a-thermal-camera-Platypush-and-a-pinch-of-machine-learning.md index 738f8ca..f4a2db9 100644 --- a/static/pages/Detect-people-with-a-RaspberryPi-a-thermal-camera-Platypush-and-a-pinch-of-machine-learning.md +++ b/static/pages/Detect-people-with-a-RaspberryPi-a-thermal-camera-Platypush-and-a-pinch-of-machine-learning.md @@ -103,6 +103,20 @@ Install also the Python dependencies for the HTTP server, the MLX90640 plugin an [sudo] pip install 'platypush[http,tensorflow,mlx90640]' ``` +Tensorflow may also require some additional dependencies installable via `apt-get`: + +```shell +[sudo] apt-get install python3-numpy \ + libatlas-base-dev \ + libblas-dev \ + liblapack-dev \ + python3-dev \ + gfortran \ + python3-setuptools \ + python3-scipy \ + python3-h5py +``` + Heading to your computer (we'll be using it for building the model that will be used on the RaspberryPi), install OpenCV, Tensorflow and Jupyter and my utilities for handling images: @@ -119,10 +133,10 @@ OpenCV, Tensorflow and Jupyter and my utilities for handling images: # Clone my repository with the image and training utilities # and the Jupyter notebooks that we'll use for training. -git clone https://github.com/BlackLight/imgdetect-utils +git clone https://github.com/BlackLight/imgdetect-utils ~/projects/imgdetect-utils ``` -## Capturing phase +## Capture phase Now that you’ve got all the hardware and software in place, it’s time to start capturing frames with your camera and use them to train your model. First, configure @@ -152,7 +166,7 @@ curl -XPOST -H 'Content-Type: application/json' -d ' "output_file":"~/snap.png", "scale_factor":20 } -}' -a 'username:password' http://localhost:8008/execute +}' -u 'username:password' http://localhost:8008/execute ``` If everything went well, the thermal picture should be stored under `~/snap.png`. In my case it looks like this while @@ -180,7 +194,7 @@ cron.ThermalCameraSnapshotCron: actions: - action: camera.ir.mlx90640.capture args: - output_file: "${__import__(’datetime’).datetime.now().strftime(’/your/img/folder/%Y-%m-%d_%H-%M-%S.jpg’)}" + output_file: "${__import__(’datetime’).datetime.now().strftime(’/home/pi/datasets/people_detect/images/%Y-%m-%d_%H-%M-%S.jpg’)}" grayscale: true ``` @@ -189,7 +203,6 @@ Or directly as a Python script under e.g. `~/.config/platypush/thermal.py` (make ```python from datetime import datetime -from platypush.config import Config from platypush.cron import cron from platypush.utils import run @@ -197,15 +210,14 @@ from platypush.utils import run @cron('* * * * *') def take_thermal_picture(**context): run('camera.ir.mlx90640.capture', grayscale=True, - output_file=datetime.now().strftime('/your/img/folder/%Y-%m-%d_%H-%m-%S.jpg')) + output_file=datetime.now().strftime('/home/pi/datasets/people_detect/images/%Y-%m-%d_%H-%m-%S.jpg')) ``` -The images will be stored under `/your/img/folder` in the format -`YYYY-mm-dd_HH-MM-SS.jpg`. No scale factor is applied — even if the images will -be tiny we’ll only need them to train our model. Also, we’ll convert the images -to grayscale — the neural network will be lighter and actually more accurate, -as it will only have to rely on one variable per pixel without being tricked by -RGB combinations. +The images will be stored under `/home/pi/datasets/people_detect/images` (make sure that the directory exists before starting +the service) in the format `YYYY-mm-dd_HH-MM-SS.jpg`. No scale factor is applied — even if the images will be tiny we’ll +only need them to train our model. Also, we’ll convert the images to grayscale — the neural network will be lighter and +actually more accurate, as it will only have to rely on one variable per pixel without being tricked by RGB +combinations. Restart Platypush and verify that every minute a new picture is created under your images directory. Let it run for a few hours or days until you’re happy @@ -219,38 +231,39 @@ enough variety to achieve accuracy levels above 99%. Once you’re happy with the number of samples you’ve taken, copy the images over to the machine you’ll be using to train your model (they should be all small -JPEG files weighing under 500 bytes each). Copy them to the folder where you -have cloned my `imgdetect-utils` repository: +JPEG files weighing under 500 bytes each). Copy them to your local machine: ```shell -BASEDIR=~/git_tree/imgdetect-utils - -# This directory will contain your raw images -IMGDIR=$BASEDIR/datasets/ir/images - -# This directory will contain the raw numpy training -# data parsed from the images -DATADIR=$BASEDIR/datasets/ir/data - -mkdir -p $IMGDIR -mkdir -p $DATADIR +BASEDIR=~/datasets/people_detect +mkdir -p "$BASEDIR" # Copy the images -scp pi@raspberry:/your/img/folder/*.jpg $IMGDIR +scp -r pi@raspberry:/home/pi/datasets/people_detect ~ +IMGDIR="$BASEDIR/images" + +# This directory will contain the raw numpy training +# data parsed from the images (useful if you want to +# re-train the model without having to reprocess all +# the images) +DATADIR="$BASEDIR/data" + +mkdir -p "$IMGDIR" +mkdir -p "$DATADIR" # Create the labels for the images. Each label is a # directory under $IMGDIR -mkdir $IMGDIR/negative -mkdir $IMGDIR/positive +mkdir "$IMGDIR/negative" +mkdir "$IMGDIR/positive" ``` -Once the images have been copied and the directories for the labels created, +Once the images have been copied, and the directories for the labels created, run the `label.py` script provided in the repository to interactively label the images: ```shell -cd $BASEDIR -python utils/label.py -d $IMGDIR --scale-factor 10 +UTILS_DIR=~/projects/imgdetect-utils +cd "$UTILS_DIR" +python utils/label.py -d "$IMGDIR" --scale-factor 10 ``` Each image will open in a new window and you can label it by typing either 1 @@ -270,27 +283,18 @@ Jupyter notebook is provided under `notebooks/ir` and it should be relatively self-explanatory: ```python -### Import stuff - import os -import sys import numpy as np +import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras - -###### -# Change this with the directory where you cloned the imgdetect-utils repo -basedir = os.path.join(os.path.expanduser('~'), 'git_tree', 'imgdetect-utils') -sys.path.append(os.path.join(basedir)) - -from src.image_helpers import plot_images_grid, create_dataset_files -from src.train_helpers import load_data, plot_results, export_model +from tensorflow.keras.preprocessing.image import ImageDataGenerator # Define the dataset directory - replace it with the path on your local # machine where you have stored the previously labelled dataset. -dataset_dir = os.path.join(basedir, 'datasets', 'ir') +dataset_dir = os.path.join(os.path.expanduser('~'), 'datasets', 'people_detect') # Define the size of the input images. In the case of an # MLX90640 it will be (24, 32) for horizontal images and @@ -302,136 +306,252 @@ batch_size = 64 # Number of training epochs epochs = 5 -###### -# The Tensorflow model and properties file will be stored here -tf_model_dir = os.path.join(basedir, 'models', 'ir', 'tensorflow') -tf_model_file = os.path.join(tf_model_dir, 'ir.pb') -tf_properties_file = os.path.join(tf_model_dir, 'ir.json') +# Instantiate a generator that puts 30% of the images into the validation set +# and normalizes their pixel values between 0 and 1 +generator = ImageDataGenerator(rescale=1./255, validation_split=0.3) -# Base directory that contains your training images and dataset files -dataset_base_dir = os.path.join(basedir, 'datasets', 'ir') -dataset_dir = os.path.join(dataset_base_dir, 'data') +train_data = generator.flow_from_directory(dataset_dir, + target_size=image_size, + batch_size=batch_size, + subset='training', + class_mode='categorical', + color_mode='grayscale') -# Store your thermal camera images here -img_dir = os.path.join(dataset_base_dir, 'images') - -### Create model directories - -os.makedirs(tf_model_dir, mode=0o775, exist_ok=True) - -### Create a dataset files from the available images - -dataset_files = create_dataset_files(img_dir, dataset_dir, - split_size=1000, - num_threads=1, - resize=input_size) - -### Or load existing .npz dataset files - - - -dataset_files = [os.path.join(dataset_dir, f) - for f in os.listdir(dataset_dir) - if os.path.isfile(os.path.join(dataset_dir, f)) - and f.endswith('.npz')] - -### Get the training and test set randomly out of the dataset with a split of 70/30 - -train_set, test_set, classes = load_data(*dataset_files, split_percentage=0.7) -print('Loaded {} training images and {} test images. Classes: {}'.format( - train_set.shape[0], test_set.shape[0], classes)) - -# Example output: -# Loaded 623 training images and 267 test images. Classes: ['negative' 'positive'] - -# Extract training set and test set images and labels -train_images = np.asarray([item[0] for item in train_set]) -train_labels = np.asarray([item[1] for item in train_set]) -test_images = np.asarray([item[0] for item in test_set]) -test_labels = np.asarray([item[1] for item in test_set]) - -### Inspect the first 25 images in the training set - -plot_images_grid(images=train_images, labels=train_labels, - classes=classes, rows=5, cols=5) - -### Declare the model - -# - Flatten input -# - Layer 1: 50% the number of pixels per image (RELU activation) -# - Layer 2: 20% the number of pixels per image (RELU activation) -# - Layer 3: as many neurons as the output labels -# (in this case 2: negative, positive) (Softmax activation) - -model = keras.Sequential([ - keras.layers.Flatten(input_shape=train_images[0].shape), - keras.layers.Dense(int(0.5 * train_images.shape[1] * train_images.shape[2]), - activation=tf.nn.relu), - keras.layers.Dense(int(0.2 * train_images.shape[1] * train_images.shape[2]), - activation=tf.nn.relu), - keras.layers.Dense(len(classes), activation=tf.nn.softmax) -]) - -### Compile the model - -# - Loss function:This measures how accurate the model is during training. We -# want to minimize this function to "steer" the model in the right direction. -# - Optimizer: This is how the model is updated based on the data it sees and -# its loss function. -# - Metrics: Used to monitor the training and testing steps. The following -# example uses accuracy, the fraction of the images that are correctly classified. - -model.compile(optimizer='adam', - loss='sparse_categorical_crossentropy', - metrics=['accuracy']) - -### Train the model - -model.fit(train_images, train_labels, epochs=3) - -# Example output: -# Epoch 1/3 623/623 [======] - 0s 487us/sample - loss: 0.2672 - acc: 0.8860 -# Epoch 2/3 623/623 [======] - 0s 362us/sample - loss: 0.0247 - acc: 0.9936 -# Epoch 3/3 623/623 [======] - 0s 373us/sample - loss: 0.0083 - acc: 0.9984 - -### Evaluate accuracy against the test set - -test_loss, test_acc = model.evaluate(test_images, test_labels) -print('Test accuracy:', test_acc) - -# Example output: -# 267/267 [======] - 0s 243us/sample - loss: 0.0096 - acc: 0.9963 -# Test accuracy: 0.9962547 - -### Make predictions on the test set - -predictions = model.predict(test_images) - -# Plot a grid of 36 images and show expected vs. predicted values -plot_results(images=test_images, labels=test_labels, - classes=classes, predictions=predictions, - rows=9, cols=4) - -### Export as a Tensorflow model - -export_model(model, tf_model_file, - properties_file=tf_properties_file, - classes=classes, - input_size=input_size) +test_data = generator.flow_from_directory(dataset_dir, + target_size=image_size, + batch_size=batch_size, + subset='validation', + class_mode='categorical', + color_mode='grayscale') ``` -If you managed to execute the whole notebook correctly you’ll have a file named -`ir.pb` under `models/ir/tensorflow`. That’s your Tensorflow model file, you can -now copy it over to the RaspberryPi and use it to do predictions: +After initializing the generators, let's take a look at a sample of 25 images from the training set together with their +labels: + +```python +index_to_label = { + index: label + for label, index in train_data.class_indices.items() +} + +plt.figure(figsize=(10, 10)) +batch = train_data.next() + +for i in range(min(25, len(batch[0]))): + img = batch[0][i] + + label = index_to_label[np.argmax(batch[1][i])] + plt.subplot(5, 5, i+1) + plt.xticks([]) + plt.yticks([]) + plt.grid(False) + + # Note the np.squeeze call - matplotlib can't + # process grayscale images unless the extra + # 1-sized dimension is removed. + plt.imshow(np.squeeze(img)) + plt.xlabel(label) + +plt.show() +``` + +You should see an image like this: + +![Thermal camera pictures labelling](../img/people-detect-4.png) + +Let's now declare a model and train it on the given training set: + +```python +model = keras.Sequential([ + # Layer 1: flatten the input images + keras.layers.Flatten(input_shape=image_size), + # Layer 2: fully-connected layer with 80% the neurons as the input images + # and RELU activation function + keras.layers.Dense(round(0.8 * image_size[0] * image_size[1]), + activation=tf.nn.relu), + # Layer 2: fully-connected layer with 30% the neurons as the input images + # and RELU activation function + keras.layers.Dense(round(0.3 * image_size[0] * image_size[1]), + activation=tf.nn.relu), + # Layer 3: fully-connected layer with as many units as the output labels + # and Softmax activation function + keras.layers.Dense(len(train_data.class_indices), + activation=tf.nn.softmax) +]) + +# Compile the model for classification, use the Adam optimizer and pick +# accuracy as optimization metric +model.compile(loss='categorical_crossentropy', + optimizer='adam', + metrics=['accuracy']) + +# Train the model in batches +history = model.fit( + train_data, + steps_per_epoch=train_data.samples/batch_size, + validation_data=test_data, + validation_steps=test_data.samples/batch_size, + epochs=epochs +) + +# Example output: +# Epoch 1/5 loss: 0.2529 - accuracy: 0.9196 - val_loss: 0.0543 - val_accuracy: 0.9834 +# Epoch 2/5 loss: 0.0572 - accuracy: 0.9801 - val_loss: 0.0213 - val_accuracy: 0.9967 +# Epoch 3/5 loss: 0.0254 - accuracy: 0.9915 - val_loss: 0.0080 - val_accuracy: 1.0000 +# Epoch 4/5 loss: 0.0117 - accuracy: 0.9979 - val_loss: 0.0053 - val_accuracy: 0.9967 +# Epoch 5/5 loss: 0.0058 - accuracy: 1.0000 - val_loss: 0.0046 - val_accuracy: 0.9983 +``` + +We can now see how the accuracy of the model progressed over the iteration: + +```python +epochs = history.epoch +accuracy = history.history['accuracy'] +fig = plt.figure() +plot = fig.add_subplot() +plot.set_xlabel('epoch') +plot.set_ylabel('accuracy') +plot.plot(epochs, accuracy) +``` + +The output should look like this: + +![Thermal camera pictures labelling](../img/people-detect-5.png) + +By constraining the problem properly (i.e. translating "detect people in an image" to "infer the presence of people by +telling if there are more white halos than usual in a small grayscale image") we have indeed managed to achieve high +levels of accuracy both on the training and validation set despite using a relatively small dataset. + +## Deploying the model + +Once you are happy with the model, it's time to save it so it can be deployed to your RaspberryPi for real-time +predictions: + +```python +def model_save(model, target, labels=None, overwrite=True): + import json + import pathlib + + # Check if we should save it like a .h5/.pb file or as a directory + model_dir = pathlib.Path(target) + if str(target).endswith('.h5') or \ + str(target).endswith('.pb'): + model_dir = model_dir.parent + + # Create the model directory if it doesn't exist + pathlib.Path(model_dir).mkdir(parents=True, exist_ok=True) + + # Save the Tensorflow model using the .save method + model.save(target, overwrite=overwrite) + + # Save the label names of your model in a separate JSON file + if labels: + labels_file = os.path.join(model_dir, 'labels.json') + with open(labels_file, 'w') as f: + f.write(json.dumps(list(labels))) + +model_dir = os.path.expanduser('~/models/people_detect') +model_save(model, model_dir, + labels=train_data.class_indices.keys(), overwrite=True) +``` + +If you managed to execute the whole notebook then you’ll have your model saved under `~/models/people_detect`. +You can now copy it over to the RaspberryPi and use it to do predictions (first create `~/models` on the RaspberryPi +if it's not available already): ```shell -scp $BASEDIR/models/ir/tensorflow/ir.pb pi@raspberry:/home/pi/models +scp -r ~/models/people_detect pi@raspberry:/home/pi/models ``` ## Detect people in the room -Once the Tensorflow model has been deployed to the RaspberryPi you can replace the -previous cronjob that stores pictures at regular intervals with a cronjob that captures -pictures and feeds them to the previously trained model +Once the Tensorflow model has been deployed to the RaspberryPi you can quickly test how it performs against some +pictures taken on the device using +the [`tensorflow.predict`](https://platypush.readthedocs.io/en/latest/platypush/plugins/tensorflow.html#platypush.plugins.tensorflow.TensorflowPlugin.predict) +method: +```shell +curl -XPOST -u 'user:pass' -H 'Content-Type: application/json' -d ' +{ + "type":"request", + "action":"tensorflow.predict", + "args": { + "inputs": "~/datasets/people_detect/positive/some_image.jpg", + "model": "~/models/people_detect" + } +}' http://your-raspberry-pi:8008/execute +``` + +Expected output: + +```json +{ + "id": "", + "type": "response", + "target": "http", + "origin": "raspberrypi", + "response": { + "output": { + "model": "~/models/people_detect", + "outputs": [ + { + "negative": 0, + "positive": 1 + } + ], + "predictions": [ + "positive" + ] + }, + "errors": [] + } +} +``` + +Once the structure of the response is clear, we can replace the previous cronjob that stores pictures at regular +intervals with a new one that captures pictures and feeds them to the previously trained model to make predictions (I'll +use a Python script stored under `~/.config/platypush/scripts` in this case, but it will also work with a cron defined +in YAML in `config.yaml`) and, for example, turns on the lights when presence is detected and turns them off when +presence is no longer detected (I'll use +the [`light.hue`](https://platypush.readthedocs.io/en/latest/platypush/plugins/light.hue.html) plugin in this example): + +```python +import os +from platypush.context import get_plugin +from platypush.cron import cron + + +@cron('* * * * * */30') +def check_presence(**context): + # Get plugins by name + camera = get_plugin('camera.ir.mlx90640') + tensorflow = get_plugin('tensorflow') + lights = get_plugin('light.hue') + + image_file = '/tmp/frame.jpg' + model_file = os.path.expanduser('~/models/people_detect/saved_model.h5') + camera.capture_image( + image_file=image_file, grayscale=True) + + prediction = tensorflow.predict( + inputs=image_file, model=model_file)['predictions'][0] + + if prediction == 'positive': + lights.on() + else: + lights.off() +``` + +Restart the service and let it run. Every 30 seconds the cron will run, take a picture, check if people are detected in +that picture and turn the lights on/off accordingly. + +## What's next? + +That’s your call! Feel free to experiment with more elaborate rules, for example to change the status of the music/video +playing in the room when someone enters, using Platypush media plugins. Or say a custom good morning text when you first +enter the room in the morning. Or build your own surveillance system to track the presence of people when you’re not at +home. Or enhance the model to detect also the number of people in the room, not only the presence. Or you can combine it +with an optical flow sensor, distance sensor, laser range sensor or optical camera (platypush provides plugins for many +of them) to build an even more robust system that also detects and tracks movements or proximity to the sensor, and so +on.