forked from platypush/platypush
Tensorflow plugin implementation WIP [#121]
TODO: Extend neural network implementation to work also with e.g. input from images, sounds or binary
This commit is contained in:
parent
d938017bf8
commit
1f1fefca9d
7 changed files with 1001 additions and 1 deletions
|
@ -247,6 +247,9 @@ autodoc_mock_imports = ['googlesamples.assistant.grpc.audio_helpers',
|
|||
'pyotp',
|
||||
'linode_api4',
|
||||
'pyzbar',
|
||||
'tensorflow',
|
||||
'keras',
|
||||
'pandas',
|
||||
]
|
||||
|
||||
sys.path.insert(0, os.path.abspath('../..'))
|
||||
|
|
71
platypush/message/event/tensorflow.py
Normal file
71
platypush/message/event/tensorflow.py
Normal file
|
@ -0,0 +1,71 @@
|
|||
from typing import Optional, Dict, Union
|
||||
|
||||
from platypush.message.event import Event
|
||||
|
||||
|
||||
class TensorflowEvent(Event):
|
||||
def __init__(self, model: str, logs: Optional[Dict[str, Union[int, float]]], *args, **kwargs):
|
||||
"""
|
||||
:param model: Name of the Tensorflow model.
|
||||
:param logs: Logs and metrics.
|
||||
"""
|
||||
super().__init__(*args, model=model, logs=logs, **kwargs)
|
||||
|
||||
|
||||
class TensorflowEpochStartedEvent(TensorflowEvent):
|
||||
"""
|
||||
Triggered when a Tensorflow model training/evaluation epoch begins.
|
||||
"""
|
||||
def __init__(self, epoch: int, *args, **kwargs):
|
||||
"""
|
||||
:param epoch: Epoch index.
|
||||
"""
|
||||
super().__init__(*args, epoch=epoch, **kwargs)
|
||||
|
||||
|
||||
class TensorflowEpochEndedEvent(TensorflowEvent):
|
||||
"""
|
||||
Triggered when a Tensorflow model training/evaluation epoch ends.
|
||||
"""
|
||||
def __init__(self, epoch: int, *args, **kwargs):
|
||||
"""
|
||||
:param epoch: Epoch index.
|
||||
"""
|
||||
super().__init__(*args, epoch=epoch, **kwargs)
|
||||
|
||||
|
||||
class TensorflowBatchStartedEvent(TensorflowEvent):
|
||||
"""
|
||||
Triggered when a Tensorflow model training/evaluation batch starts being processed.
|
||||
"""
|
||||
def __init__(self, batch: int, *args, **kwargs):
|
||||
"""
|
||||
:param batch: Batch index.
|
||||
"""
|
||||
super().__init__(*args, batch=batch, **kwargs)
|
||||
|
||||
|
||||
class TensorflowBatchEndedEvent(TensorflowEvent):
|
||||
"""
|
||||
Triggered when a the processing of a Tensorflow model training/evaluation batch ends.
|
||||
"""
|
||||
def __init__(self, batch: int, *args, **kwargs):
|
||||
"""
|
||||
:param batch: Batch index.
|
||||
"""
|
||||
super().__init__(*args, batch=batch, **kwargs)
|
||||
|
||||
|
||||
class TensorflowTrainStartedEvent(TensorflowEvent):
|
||||
"""
|
||||
Triggered when a Tensorflow model starts being trained.
|
||||
"""
|
||||
|
||||
|
||||
class TensorflowTrainEndedEvent(TensorflowEvent):
|
||||
"""
|
||||
Triggered when the training phase of a Tensorflow model ends.
|
||||
"""
|
||||
|
||||
|
||||
# vim:sw=4:ts=4:et:
|
34
platypush/message/response/tensorflow.py
Normal file
34
platypush/message/response/tensorflow.py
Normal file
|
@ -0,0 +1,34 @@
|
|||
from typing import Dict, List, Union
|
||||
|
||||
from platypush.message.response import Response
|
||||
|
||||
|
||||
class TensorflowResponse(Response):
|
||||
"""
|
||||
Generic Tensorflow response.
|
||||
"""
|
||||
def __init__(self, *args, model: str, **kwargs):
|
||||
"""
|
||||
:param model: Name of the model.
|
||||
"""
|
||||
super().__init__(*args, output={
|
||||
'model': model,
|
||||
}, **kwargs)
|
||||
|
||||
|
||||
class TensorflowTrainResponse(TensorflowResponse):
|
||||
"""
|
||||
Tensorflow model fit/train response.
|
||||
"""
|
||||
def __init__(self, *args, epochs: List[int], history: Dict[str, List[Union[int, float]]], **kwargs):
|
||||
"""
|
||||
:param epochs: List of epoch indexes the model has been trained on.
|
||||
:param history: Train history, as a ``metric -> [values]`` dictionary where each value in ``values`` is
|
||||
the value for of that metric on a specific epoch.
|
||||
"""
|
||||
super().__init__(*args, **kwargs)
|
||||
self.output['epochs'] = epochs
|
||||
self.output['history'] = history
|
||||
|
||||
|
||||
# vim:sw=4:ts=4:et:
|
|
@ -49,7 +49,10 @@ class CsvPlugin(Plugin):
|
|||
def _parse_header(filename: str, **csv_args) -> List[str]:
|
||||
column_names = []
|
||||
with open(filename, 'r', newline='') as f:
|
||||
has_header = csv.Sniffer().has_header(f.read(1024))
|
||||
try:
|
||||
has_header = csv.Sniffer().has_header(f.read(1024))
|
||||
except csv.Error:
|
||||
has_header = False
|
||||
|
||||
if has_header:
|
||||
with open(filename, 'r', newline='') as f:
|
||||
|
|
881
platypush/plugins/tensorflow/__init__.py
Normal file
881
platypush/plugins/tensorflow/__init__.py
Normal file
|
@ -0,0 +1,881 @@
|
|||
import os
|
||||
import shutil
|
||||
import threading
|
||||
from typing import List, Dict, Any, Union, Optional, Tuple, Iterable
|
||||
|
||||
import numpy as np
|
||||
from tensorflow.keras import Model
|
||||
from tensorflow.keras.layers import Layer
|
||||
from tensorflow.keras.models import load_model
|
||||
|
||||
from platypush.config import Config
|
||||
from platypush.context import get_bus
|
||||
from platypush.message.event.tensorflow import TensorflowEpochStartedEvent, TensorflowEpochEndedEvent, \
|
||||
TensorflowBatchStartedEvent, TensorflowBatchEndedEvent, TensorflowTrainStartedEvent, TensorflowTrainEndedEvent
|
||||
from platypush.message.response.tensorflow import TensorflowTrainResponse
|
||||
from platypush.plugins import Plugin, action
|
||||
|
||||
|
||||
class TensorflowPlugin(Plugin):
|
||||
"""
|
||||
This plugin can be used to create, train, load and make predictions with TensorFlow-compatible machine learning
|
||||
models.
|
||||
|
||||
Triggers:
|
||||
|
||||
- :class:`platypush.message.event.tensorflow.TensorflowEpochStartedEvent`
|
||||
when a Tensorflow model training/evaluation epoch begins.
|
||||
- :class:`platypush.message.event.tensorflow.TensorflowEpochEndedEvent`
|
||||
when a Tensorflow model training/evaluation epoch ends.
|
||||
- :class:`platypush.message.event.tensorflow.TensorflowBatchStartedEvent`
|
||||
when a Tensorflow model training/evaluation batch starts being processed.
|
||||
- :class:`platypush.message.event.tensorflow.TensorflowBatchEndedEvent`
|
||||
when a the processing of a Tensorflow model training/evaluation batch ends.
|
||||
- :class:`platypush.message.event.tensorflow.TensorflowTrainStartedEvent`
|
||||
when a Tensorflow model starts being trained.
|
||||
- :class:`platypush.message.event.tensorflow.TensorflowTrainEndedEvent`
|
||||
when the training phase of a Tensorflow model ends.
|
||||
|
||||
Requires:
|
||||
|
||||
* **numpy** (``pip install numpy``)
|
||||
* **pandas** (``pip install pandas``) (optional, for CSV parsing)
|
||||
* **tensorflow** (``pip install 'tensorflow>=2.0'``)
|
||||
* **keras** (``pip install keras``)
|
||||
|
||||
"""
|
||||
|
||||
_supported_data_file_extensions = ['npy', 'npz', 'csv']
|
||||
|
||||
def __init__(self, workdir: str = os.path.join(Config.get('workdir'), 'tensorflow'), **kwargs):
|
||||
"""
|
||||
:param workdir: Working directory for TensorFlow, where models will be stored
|
||||
(default: PLATYPUSH_WORKDIR/tensorflow).
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
self.models: Dict[str, Model] = {}
|
||||
self._model_locks: Dict[str, threading.RLock()] = {}
|
||||
self._work_dir = os.path.abspath(os.path.expanduser(workdir))
|
||||
self._models_dir = os.path.join(self._work_dir, 'models')
|
||||
os.makedirs(self._models_dir, mode=0o755, exist_ok=True)
|
||||
|
||||
def _load_model(self, name: str, reload: bool = False) -> Model:
|
||||
if name in self.models and not reload:
|
||||
return self.models[name]
|
||||
|
||||
model_dir = os.path.join(self._models_dir, name)
|
||||
assert os.path.isdir(model_dir), 'The model {} does not exist'.format(name)
|
||||
return load_model(model_dir)
|
||||
|
||||
def _generate_callbacks(self, model: str):
|
||||
from tensorflow.keras.callbacks import LambdaCallback
|
||||
return [LambdaCallback(
|
||||
on_epoch_begin=self.on_epoch_begin(model),
|
||||
on_epoch_end=self.on_epoch_end(model),
|
||||
on_batch_begin=self.on_batch_begin(model),
|
||||
on_batch_end=self.on_batch_end(model),
|
||||
on_train_begin=self.on_train_begin(model),
|
||||
on_train_end=self.on_train_end(model),
|
||||
)]
|
||||
|
||||
@staticmethod
|
||||
def on_epoch_begin(model: str):
|
||||
def callback(epoch: int, logs: Optional[dict] = None):
|
||||
get_bus().post(TensorflowEpochStartedEvent(model=model, epoch=epoch, logs=logs))
|
||||
return callback
|
||||
|
||||
@staticmethod
|
||||
def on_epoch_end(model: str):
|
||||
def callback(epoch: int, logs: Optional[dict] = None):
|
||||
get_bus().post(TensorflowEpochEndedEvent(model=model, epoch=epoch, logs=logs))
|
||||
return callback
|
||||
|
||||
@staticmethod
|
||||
def on_batch_begin(model: str):
|
||||
def callback(batch: int, logs: Optional[dict] = None):
|
||||
get_bus().post(TensorflowBatchStartedEvent(model=model, batch=batch, logs=logs))
|
||||
return callback
|
||||
|
||||
@staticmethod
|
||||
def on_batch_end(model: str):
|
||||
def callback(batch, logs: Optional[dict] = None):
|
||||
get_bus().post(TensorflowBatchEndedEvent(model=model, batch=batch, logs=logs))
|
||||
return callback
|
||||
|
||||
@staticmethod
|
||||
def on_train_begin(model: str):
|
||||
def callback(logs: Optional[dict] = None):
|
||||
get_bus().post(TensorflowTrainStartedEvent(model=model, logs=logs))
|
||||
return callback
|
||||
|
||||
@staticmethod
|
||||
def on_train_end(model: str):
|
||||
def callback(logs: Optional[dict] = None):
|
||||
get_bus().post(TensorflowTrainEndedEvent(model=model, logs=logs))
|
||||
return callback
|
||||
|
||||
@action
|
||||
def load(self, name: str, reload: bool = False) -> Dict[str, Any]:
|
||||
"""
|
||||
(Re)-load a model from the file system.
|
||||
|
||||
:param name: Name of the model. Must be a folder name stored under ``<workdir>/models``.
|
||||
:param reload: If ``True``, the model will be reloaded from the filesystem even if it's been already
|
||||
loaded, otherwise the model currently in memory will be kept (default: ``False``).
|
||||
:return: The model configuration.
|
||||
"""
|
||||
model = self._load_model(name, reload=reload)
|
||||
return model.get_config()
|
||||
|
||||
@action
|
||||
def unload(self, name: str) -> None:
|
||||
"""
|
||||
Remove a loaded model from memory.
|
||||
|
||||
:param name: Name of the model.
|
||||
"""
|
||||
assert name in self.models, 'The model {} is not loaded'.format(name)
|
||||
del self.models[name]
|
||||
|
||||
@action
|
||||
def remove(self, name: str) -> None:
|
||||
"""
|
||||
Unload a module and, if stored on the filesystem, remove its resource files as well.
|
||||
WARNING: This operation is not reversible.
|
||||
|
||||
:param name: Name of the model.
|
||||
"""
|
||||
if name in self.models:
|
||||
del self.models[name]
|
||||
|
||||
model_dir = os.path.join(self._models_dir, name)
|
||||
if os.path.isdir(model_dir):
|
||||
shutil.rmtree(model_dir)
|
||||
|
||||
@action
|
||||
def create_network(self,
|
||||
name: str,
|
||||
layers: List[Union[Layer, Dict[str, Any]]],
|
||||
input_names: Optional[List[str]] = None,
|
||||
output_names: Optional[List[str]] = None,
|
||||
optimizer: Optional[str] = 'rmsprop',
|
||||
loss: Optional[Union[str, List[str], Dict[str, str]]] = None,
|
||||
metrics: Optional[
|
||||
Union[str, List[Union[str, List[str]]], Dict[str, Union[str, List[str]]]]] = None,
|
||||
loss_weights: Optional[Union[List[float], Dict[str, float]]] = None,
|
||||
sample_weight_mode: Optional[Union[str, List[str], Dict[str, str]]] = None,
|
||||
weighted_metrics: Optional[List[str]] = None,
|
||||
target_tensors=None,
|
||||
**kwargs) -> Dict[str, Any]:
|
||||
"""
|
||||
Create a neural network TensorFlow Keras model.
|
||||
|
||||
:param name: Name of the model.
|
||||
:param layers: List of layers. Example:
|
||||
|
||||
.. code-block:: javascript
|
||||
|
||||
[
|
||||
// Input flatten layer with 10 units
|
||||
{
|
||||
"type": "Flatten",
|
||||
"input_shape": [10, 10]
|
||||
},
|
||||
|
||||
// Dense hidden layer with 500 units
|
||||
{
|
||||
"type": "Dense",
|
||||
"units": 500,
|
||||
"activation": "relu"
|
||||
},
|
||||
|
||||
// Dense hidden layer with 100 units
|
||||
{
|
||||
"type": "Dense",
|
||||
"units": 100,
|
||||
"activation": "relu"
|
||||
},
|
||||
|
||||
// Dense output layer with 2 units (labels) and ``softmax`` activation function
|
||||
{
|
||||
"type": "Dense",
|
||||
"units": 2,
|
||||
"activation": "softmax"
|
||||
}
|
||||
]
|
||||
|
||||
:param input_names: List of names for the input units (default: TensorFlow name auto-assign logic).
|
||||
:param output_names: List of names for the output units (default: TensorFlow name auto-assign logic).
|
||||
:param optimizer: Optimizer, see <https://keras.io/optimizers/> (default: ``rmsprop``).
|
||||
:param loss: Loss function, see <https://keras.io/losses/>. An objective function is any callable with
|
||||
the signature ``scalar_loss = fn(y_true, y_pred)``. If the model has multiple outputs, you can use a
|
||||
different loss on each output by passing a dictionary or a list of losses. The loss value that will be
|
||||
minimized by the model will then be the sum of all individual losses (default: None).
|
||||
|
||||
:param metrics: List of metrics to be evaluated by the model during training and testing. Typically you will
|
||||
use ``metrics=['accuracy']``. To specify different metrics for different outputs of a multi-output model,
|
||||
you could also pass a dictionary, such as
|
||||
``metrics={'output_a': 'accuracy', 'output_b': ['accuracy', 'mse']}``. You can also pass a list
|
||||
``(len = len(outputs))`` of lists of metrics such as ``metrics=[['accuracy'], ['accuracy', 'mse']]`` or
|
||||
``metrics=['accuracy', ['accuracy', 'mse']]``.
|
||||
|
||||
:param loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to weight the
|
||||
loss contributions of different model outputs. The loss value that will be minimized by the model
|
||||
will then be the *weighted sum* of all individual losses, weighted by the `loss_weights` coefficients.
|
||||
If a list, it is expected to have a 1:1 mapping to the model's outputs. If a tensor, it is expected to map
|
||||
output names (strings) to scalar coefficients.
|
||||
|
||||
:param sample_weight_mode: If you need to do time-step-wise sample weighting (2D weights), set this to
|
||||
``"temporal"``. ``None`` defaults to sample-wise weights (1D). If the model has multiple outputs,
|
||||
you can use a different ``sample_weight_mode`` on each output by passing a dictionary or a list of modes.
|
||||
|
||||
:param weighted_metrics: List of metrics to be evaluated and weighted by ``sample_weight`` or ``class_weight``
|
||||
during training and testing.
|
||||
|
||||
:param target_tensors: By default, Keras will create placeholders for the model's target, which will be fed
|
||||
with the target data during training. If instead you would like to use your own target tensors (in turn,
|
||||
Keras will not expect external numpy data for these targets at training time), you can specify them via the
|
||||
``target_tensors`` argument. It can be a single tensor (for a single-output model), a list of tensors,
|
||||
or a dict mapping output names to target tensors.
|
||||
|
||||
:param kwargs: Extra arguments to pass to ``Model.compile()``.
|
||||
|
||||
:return: The model configuration, as a dict. Example:
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
{
|
||||
"name": "test_model",
|
||||
"layers": [
|
||||
{
|
||||
"class_name": "Flatten",
|
||||
"config": {
|
||||
"name": "flatten",
|
||||
"trainable": true,
|
||||
"batch_input_shape": [
|
||||
null,
|
||||
10
|
||||
],
|
||||
"dtype": "float32",
|
||||
"data_format": "channels_last"
|
||||
}
|
||||
},
|
||||
{
|
||||
"class_name": "Dense",
|
||||
"config": {
|
||||
"name": "dense",
|
||||
"trainable": true,
|
||||
"dtype": "float32",
|
||||
"units": 100,
|
||||
"activation": "relu",
|
||||
"use_bias": true,
|
||||
"kernel_initializer": {
|
||||
"class_name": "GlorotUniform",
|
||||
"config": {
|
||||
"seed": null
|
||||
}
|
||||
},
|
||||
"bias_initializer": {
|
||||
"class_name": "Zeros",
|
||||
"config": {}
|
||||
},
|
||||
"kernel_regularizer": null,
|
||||
"bias_regularizer": null,
|
||||
"activity_regularizer": null,
|
||||
"kernel_constraint": null,
|
||||
"bias_constraint": null
|
||||
}
|
||||
},
|
||||
{
|
||||
"class_name": "Dense",
|
||||
"config": {
|
||||
"name": "dense_1",
|
||||
"trainable": true,
|
||||
"dtype": "float32",
|
||||
"units": 50,
|
||||
"activation": "relu",
|
||||
"use_bias": true,
|
||||
"kernel_initializer": {
|
||||
"class_name": "GlorotUniform",
|
||||
"config": {
|
||||
"seed": null
|
||||
}
|
||||
},
|
||||
"bias_initializer": {
|
||||
"class_name": "Zeros",
|
||||
"config": {}
|
||||
},
|
||||
"kernel_regularizer": null,
|
||||
"bias_regularizer": null,
|
||||
"activity_regularizer": null,
|
||||
"kernel_constraint": null,
|
||||
"bias_constraint": null
|
||||
}
|
||||
},
|
||||
{
|
||||
"class_name": "Dense",
|
||||
"config": {
|
||||
"name": "dense_2",
|
||||
"trainable": true,
|
||||
"dtype": "float32",
|
||||
"units": 2,
|
||||
"activation": "softmax",
|
||||
"use_bias": true,
|
||||
"kernel_initializer": {
|
||||
"class_name": "GlorotUniform",
|
||||
"config": {
|
||||
"seed": null
|
||||
}
|
||||
},
|
||||
"bias_initializer": {
|
||||
"class_name": "Zeros",
|
||||
"config": {}
|
||||
},
|
||||
"kernel_regularizer": null,
|
||||
"bias_regularizer": null,
|
||||
"activity_regularizer": null,
|
||||
"kernel_constraint": null,
|
||||
"bias_constraint": null
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
"""
|
||||
from tensorflow.keras import Sequential
|
||||
model = Sequential(name=name)
|
||||
for layer in layers:
|
||||
if not isinstance(layer, Layer):
|
||||
layer = self._layer_from_dict(layer.pop('type'), **layer)
|
||||
model.add(layer)
|
||||
|
||||
model.compile(
|
||||
optimizer=optimizer,
|
||||
loss=loss,
|
||||
metrics=metrics,
|
||||
loss_weights=loss_weights,
|
||||
sample_weight_mode=sample_weight_mode,
|
||||
weighted_metrics=weighted_metrics,
|
||||
target_tensors=target_tensors,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
if input_names:
|
||||
model.input_names = input_names
|
||||
if output_names:
|
||||
model.output_names = output_names
|
||||
|
||||
self.models[name] = model
|
||||
return model.get_config()
|
||||
|
||||
@action
|
||||
def create_regression(self,
|
||||
name: str,
|
||||
units: int = 1,
|
||||
input_names: Optional[List[str]] = None,
|
||||
output_names: Optional[List[str]] = None,
|
||||
activation: str = 'linear',
|
||||
use_bias: bool = True,
|
||||
kernel_initializer: str = 'glorot_uniform',
|
||||
bias_initializer: str = 'zeros',
|
||||
kernel_regularizer: Optional[str] = None,
|
||||
bias_regularizer: Optional[str] = None,
|
||||
optimizer: Optional[str] = 'rmsprop',
|
||||
loss: Optional[Union[str, List[str], Dict[str, str]]] = 'mse',
|
||||
metrics: Optional[
|
||||
Union[str, List[Union[str, List[str]]], Dict[str, Union[str, List[str]]]]] = None,
|
||||
loss_weights: Optional[Union[List[float], Dict[str, float]]] = None,
|
||||
sample_weight_mode: Optional[Union[str, List[str], Dict[str, str]]] = None,
|
||||
weighted_metrics: Optional[List[str]] = None,
|
||||
target_tensors=None,
|
||||
**kwargs) -> Dict[str, Any]:
|
||||
"""
|
||||
Create a linear/logistic regression model.
|
||||
|
||||
:param name: Name of the model.
|
||||
:param units: Output dimension (default: 1).
|
||||
:param input_names: List of names for the input units (default: TensorFlow name auto-assign logic).
|
||||
:param output_names: List of names for the output units (default: TensorFlow name auto-assign logic).
|
||||
:param activation: Activation function to be used (default: None).
|
||||
:param use_bias: Whether to calculate the bias/intercept for this model. If set
|
||||
to False, no bias/intercept will be used in calculations, e.g., the data
|
||||
is already centered (default: True).
|
||||
:param kernel_initializer: Initializer for the ``kernel`` weights matrices (default: ``glorot_uniform``).
|
||||
:param bias_initializer: Initializer for the bias vector (default: ``zeros``).
|
||||
:param kernel_regularizer: Regularizer for kernel vectors (default: None).
|
||||
:param bias_regularizer: Regularizer for bias vectors (default: None).
|
||||
:param optimizer: Optimizer, see <https://keras.io/optimizers/> (default: ``rmsprop``).
|
||||
:param loss: Loss function, see <https://keras.io/losses/>. An objective function is any callable with
|
||||
the signature ``scalar_loss = fn(y_true, y_pred)``. If the model has multiple outputs, you can use a
|
||||
different loss on each output by passing a dictionary or a list of losses. The loss value that will be
|
||||
minimized by the model will then be the sum of all individual losses (default: ``mse``, mean squared error).
|
||||
|
||||
:param metrics: List of metrics to be evaluated by the model during training and testing. Typically you will
|
||||
use ``metrics=['accuracy']``. To specify different metrics for different outputs of a multi-output model,
|
||||
you could also pass a dictionary, such as
|
||||
``metrics={'output_a': 'accuracy', 'output_b': ['accuracy', 'mse']}``. You can also pass a list
|
||||
``(len = len(outputs))`` of lists of metrics such as ``metrics=[['accuracy'], ['accuracy', 'mse']]`` or
|
||||
``metrics=['accuracy', ['accuracy', 'mse']]``.
|
||||
|
||||
:param loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to weight the
|
||||
loss contributions of different model outputs. The loss value that will be minimized by the model
|
||||
will then be the *weighted sum* of all individual losses, weighted by the `loss_weights` coefficients.
|
||||
If a list, it is expected to have a 1:1 mapping to the model's outputs. If a tensor, it is expected to map
|
||||
output names (strings) to scalar coefficients.
|
||||
|
||||
:param sample_weight_mode: If you need to do time-step-wise sample weighting (2D weights), set this to
|
||||
``"temporal"``. ``None`` defaults to sample-wise weights (1D). If the model has multiple outputs,
|
||||
you can use a different ``sample_weight_mode`` on each output by passing a dictionary or a list of modes.
|
||||
|
||||
:param weighted_metrics: List of metrics to be evaluated and weighted by ``sample_weight`` or ``class_weight``
|
||||
during training and testing.
|
||||
|
||||
:param target_tensors: By default, Keras will create placeholders for the model's target, which will be fed
|
||||
with the target data during training. If instead you would like to use your own target tensors (in turn,
|
||||
Keras will not expect external numpy data for these targets at training time), you can specify them via the
|
||||
``target_tensors`` argument. It can be a single tensor (for a single-output model), a list of tensors,
|
||||
or a dict mapping output names to target tensors.
|
||||
|
||||
:param kwargs: Extra arguments to pass to ``Model.compile()``.
|
||||
|
||||
:return: Configuration of the model, as a dict. Example:
|
||||
|
||||
.. code-block:: json
|
||||
|
||||
{
|
||||
"name": "test_regression_model",
|
||||
"trainable": true,
|
||||
"dtype": "float32",
|
||||
"units": 1,
|
||||
"activation": "linear",
|
||||
"use_bias": true,
|
||||
"kernel_initializer": {
|
||||
"class_name": "GlorotUniform",
|
||||
"config": {
|
||||
"seed": null
|
||||
}
|
||||
},
|
||||
"bias_initializer": {
|
||||
"class_name": "Zeros",
|
||||
"config": {}
|
||||
},
|
||||
"kernel_regularizer": null,
|
||||
"bias_regularizer": null
|
||||
}
|
||||
|
||||
"""
|
||||
from tensorflow.keras.experimental import LinearModel
|
||||
model = LinearModel(
|
||||
units=units,
|
||||
activation=activation,
|
||||
use_bias=use_bias,
|
||||
kernel_initializer=kernel_initializer,
|
||||
bias_initializer=bias_initializer,
|
||||
kernel_regularizer=kernel_regularizer,
|
||||
bias_regularizer=bias_regularizer,
|
||||
name=name)
|
||||
|
||||
if input_names:
|
||||
model.input_names = input_names
|
||||
if output_names:
|
||||
assert units == len(output_names)
|
||||
model.output_names = output_names
|
||||
|
||||
model.compile(
|
||||
optimizer=optimizer,
|
||||
loss=loss,
|
||||
metrics=metrics,
|
||||
loss_weights=loss_weights,
|
||||
sample_weight_mode=sample_weight_mode,
|
||||
weighted_metrics=weighted_metrics,
|
||||
target_tensors=target_tensors,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
self.models[name] = model
|
||||
return model.get_config()
|
||||
|
||||
@staticmethod
|
||||
def _layer_from_dict(layer_type: str, *args, **kwargs) -> Layer:
|
||||
from tensorflow.keras import layers
|
||||
cls = getattr(layers, layer_type)
|
||||
assert issubclass(cls, Layer)
|
||||
return cls(*args, **kwargs)
|
||||
|
||||
@staticmethod
|
||||
def _get_csv_data(data_file: str) -> np.ndarray:
|
||||
import pandas as pd
|
||||
return pd.read_csv(data_file).to_numpy()
|
||||
|
||||
@staticmethod
|
||||
def _get_numpy_data(data_file: str) -> np.ndarray:
|
||||
return np.load(data_file)
|
||||
|
||||
@staticmethod
|
||||
def _get_numpy_compressed_data(data_file: str) -> np.ndarray:
|
||||
return list(np.load(data_file).values()).pop()
|
||||
|
||||
@classmethod
|
||||
def _get_data(cls, data: Union[str, np.ndarray, Iterable, Dict[str, Union[Iterable, np.ndarray]]]) \
|
||||
-> Union[np.ndarray, Iterable, Dict[str, Union[Iterable, np.ndarray]]]:
|
||||
if not isinstance(data, str):
|
||||
return data
|
||||
|
||||
data_file = os.path.abspath(os.path.expanduser(data))
|
||||
extensions = [ext for ext in cls._supported_data_file_extensions if data_file.endswith('.' + ext)]
|
||||
assert os.path.isfile(data_file)
|
||||
assert extensions, 'Unsupported type for file {}. Supported extensions: {}'.format(
|
||||
data_file, cls._supported_data_file_extensions
|
||||
)
|
||||
|
||||
extension = extensions.pop()
|
||||
if extension == 'csv':
|
||||
return cls._get_csv_data(data_file)
|
||||
if extension == 'npy':
|
||||
return cls._get_numpy_data(data_file)
|
||||
if extension == 'npz':
|
||||
return cls._get_numpy_compressed_data(data_file)
|
||||
|
||||
raise AssertionError('Something went wrong while loading the data file {}'.format(data_file))
|
||||
|
||||
@action
|
||||
def train(self,
|
||||
name: str,
|
||||
inputs: Union[str, np.ndarray, Iterable, Dict[str, Union[Iterable, np.ndarray]]],
|
||||
outputs: Optional[Union[str, np.ndarray, Iterable]] = None,
|
||||
batch_size: Optional[int] = None,
|
||||
epochs: int = 1,
|
||||
verbose: int = 1,
|
||||
validation_split: float = 0.,
|
||||
validation_data: Optional[Tuple[Union[np.ndarray, Iterable]]] = None,
|
||||
shuffle: Union[bool, str] = True,
|
||||
class_weight: Optional[Dict[int, float]] = None,
|
||||
sample_weight: Optional[Union[np.ndarray, Iterable]] = None,
|
||||
initial_epoch: int = 0,
|
||||
steps_per_epoch: Optional[int] = None,
|
||||
validation_steps: int = None,
|
||||
validation_freq: int = 1,
|
||||
max_queue_size: int = 10,
|
||||
workers: int = 1,
|
||||
use_multiprocessing: bool = False) -> TensorflowTrainResponse:
|
||||
"""
|
||||
Trains a model on a dataset for a fixed number of epochs.
|
||||
|
||||
:param name: Name of the existing model to be trained.
|
||||
:param inputs: Input data. It can be:
|
||||
|
||||
- A numpy array (or array-like), or a list of arrays in case the model has multiple inputs.
|
||||
- A TensorFlow tensor, or a list of tensors in case the model has multiple inputs.
|
||||
- A dict mapping input names to the corresponding array/tensors, if the model has named inputs.
|
||||
- A ``tf.data`` dataset. Should return a tuple of either ``(inputs, targets)`` or
|
||||
``(inputs, targets, sample_weights)``.
|
||||
- A generator or ``keras.utils.Sequence`` returning ``(inputs, targets)`` or
|
||||
``(inputs, targets, sample weights)``.
|
||||
- A string that points to a file. Supported formats:
|
||||
|
||||
- CSV with header (``.csv`` extension``)
|
||||
- Numpy raw or compressed files (``.npy`` or ``.npz`` extension)
|
||||
|
||||
:param outputs: Target data. Like the input data `x`, it can be a numpy array (or array-like) or TensorFlow tensor(s).
|
||||
It should be consistent with `x` (you cannot have Numpy inputs and tensor targets, or inversely).
|
||||
If `x` is a dataset, generator, or `keras.utils.Sequence` instance, `y` should not be specified
|
||||
(since targets will be obtained from `x`).
|
||||
|
||||
:param batch_size: Number of samples per gradient update. If unspecified, ``batch_size`` will default to 32.
|
||||
Do not specify the ``batch_size`` if your data is in the form of symbolic tensors, datasets,
|
||||
generators, or ``keras.utils.Sequence`` instances (since they generate batches).
|
||||
|
||||
:param epochs: Number of epochs to train the model. An epoch is an iteration over the entire ``x`` and ``y``
|
||||
data provided. Note that in conjunction with ``initial_epoch``, ``epochs`` is to be understood as
|
||||
"final epoch". The model is not trained for a number of iterations given by ``epochs``, but merely until
|
||||
the epoch of index ``epochs`` is reached.
|
||||
|
||||
:param verbose: Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch.
|
||||
Note that the progress bar is not particularly useful when
|
||||
logged to a file, so verbose=2 is recommended when not running
|
||||
interactively (eg, in a production environment).
|
||||
|
||||
:param validation_split: Float between 0 and 1.
|
||||
Fraction of the training data to be used as validation data. The model will set apart this fraction
|
||||
of the training data, will not train on it, and will evaluate the loss and any model metrics on this data
|
||||
at the end of each epoch. The validation data is selected from the last samples in the ``x`` and ``y``
|
||||
data provided, before shuffling. This argument is not supported when ``x`` is a dataset, generator or
|
||||
``keras.utils.Sequence`` instance.
|
||||
|
||||
:param validation_data: Data on which to evaluate the loss and any model metrics at the end of each epoch.
|
||||
The model will not be trained on this data. ``validation_data`` will override ``validation_split``.
|
||||
``validation_data`` could be:
|
||||
|
||||
- tuple ``(x_val, y_val)`` of arrays/numpy arrays/tensors
|
||||
- tuple ``(x_val, y_val, val_sample_weights)`` of Numpy arrays
|
||||
- dataset
|
||||
|
||||
For the first two cases, ``batch_size`` must be provided. For the last case, ``validation_steps`` could be
|
||||
provided.
|
||||
|
||||
:param shuffle: Boolean (whether to shuffle the training data before each epoch) or str (for 'batch').
|
||||
'batch' is a special option for dealing with the limitations of HDF5 data; it shuffles in batch-sized
|
||||
chunks. Has no effect when ``steps_per_epoch`` is not ``None``.
|
||||
|
||||
:param class_weight: Optional dictionary mapping class indices (integers) to a weight (float) value, used
|
||||
for weighting the loss function (during training only). This can be useful to tell the model to
|
||||
"pay more attention" to samples from an under-represented class.
|
||||
|
||||
:param sample_weight: Optional iterable/numpy array of weights for the training samples, used for weighting
|
||||
the loss function (during training only). You can either pass a flat (1D) numpy array/iterable with the
|
||||
same length as the input samples (1:1 mapping between weights and samples), or in the case of temporal data,
|
||||
you can pass a 2D array with shape ``(samples, sequence_length)``, to apply a different weight to every
|
||||
time step of every sample. In this case you should make sure to specify ``sample_weight_mode="temporal"``
|
||||
in ``compile()``. This argument is not supported when ``x`` is a dataset, generator, or
|
||||
``keras.utils.Sequence`` instance, instead provide the sample_weights as the third element of ``x``.
|
||||
|
||||
:param initial_epoch: Epoch at which to start training (useful for resuming a previous training run).
|
||||
|
||||
:param steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and
|
||||
starting the next epoch. When training with input tensors such as TensorFlow data tensors, the default
|
||||
``None`` is equal to the number of samples in your dataset divided by the batch size, or 1 if that cannot
|
||||
be determined. If x is a ``tf.data`` dataset, and 'steps_per_epoch' is None, the epoch will run until the
|
||||
input dataset is exhausted. This argument is not supported with array inputs.
|
||||
|
||||
:param validation_steps: Only relevant if ``validation_data`` is provided and is a ``tf.data`` dataset. Total
|
||||
number of steps (batches of samples) to draw before stopping when performing validation at the end of
|
||||
every epoch. If 'validation_steps' is None, validation will run until the ``validation_data`` dataset is
|
||||
exhausted. In the case of a infinite dataset, it will run into a infinite loop. If 'validation_steps' is
|
||||
specified and only part of the dataset will be consumed, the evaluation will start from the beginning of
|
||||
the dataset at each epoch. This ensures that the same validation samples are used every time.
|
||||
|
||||
:param validation_freq: Only relevant if validation data is provided. Integer or ``collections_abc.Container``
|
||||
instance (e.g. list, tuple, etc.). If an integer, specifies how many training epochs to run before a
|
||||
new validation run is performed, e.g. ``validation_freq=2`` runs validation every 2 epochs. If a
|
||||
Container, specifies the epochs on which to run validation, e.g. ``validation_freq=[1, 2, 10]`` runs
|
||||
validation at the end of the 1st, 2nd, and 10th epochs.
|
||||
|
||||
:param max_queue_size: Used for generator or ``keras.utils.Sequence`` input only. Maximum size for
|
||||
the generator queue. If unspecified, ``max_queue_size`` will default to 10.
|
||||
|
||||
:param workers: Used for generator or ``keras.utils.Sequence`` input only. Maximum number of processes
|
||||
to spin up when using process-based threading. If unspecified, ``workers`` will default to 1. If 0, will
|
||||
execute the generator on the main thread.
|
||||
|
||||
:param use_multiprocessing: Used for generator or ``keras.utils.Sequence`` input only. If ``True``,
|
||||
use process-based threading. If unspecified, ``use_multiprocessing`` will default to ``False``.
|
||||
Note that because this implementation relies on multiprocessing, you should not pass non-picklable
|
||||
arguments to the generator as they can't be passed easily to children processes.
|
||||
|
||||
:return: :class:`platypush.message.response.tensorflow.TensorflowTrainResponse`
|
||||
"""
|
||||
model = self._load_model(name)
|
||||
inputs = self._get_data(inputs)
|
||||
if outputs:
|
||||
outputs = self._get_data(outputs)
|
||||
|
||||
ret = model.fit(
|
||||
x=inputs,
|
||||
y=outputs,
|
||||
batch_size=batch_size,
|
||||
epochs=epochs,
|
||||
verbose=verbose,
|
||||
callbacks=self._generate_callbacks(name),
|
||||
validation_split=validation_split,
|
||||
validation_data=validation_data,
|
||||
shuffle=shuffle,
|
||||
class_weight=class_weight,
|
||||
sample_weight=sample_weight,
|
||||
initial_epoch=initial_epoch,
|
||||
steps_per_epoch=steps_per_epoch,
|
||||
validation_steps=validation_steps,
|
||||
validation_freq=validation_freq,
|
||||
max_queue_size=max_queue_size,
|
||||
workers=workers,
|
||||
use_multiprocessing=use_multiprocessing,
|
||||
)
|
||||
|
||||
return TensorflowTrainResponse(model=name, epochs=ret.epoch, history=ret.history)
|
||||
|
||||
@action
|
||||
def evaluate(self,
|
||||
name: str,
|
||||
inputs: Union[str, np.ndarray, Iterable, Dict[str, Union[Iterable, np.ndarray]]],
|
||||
outputs: Optional[Union[str, np.ndarray, Iterable]] = None,
|
||||
batch_size: Optional[int] = None,
|
||||
verbose: int = 1,
|
||||
sample_weight: Optional[Union[np.ndarray, Iterable]] = None,
|
||||
steps: Optional[int] = None,
|
||||
max_queue_size: int = 10,
|
||||
workers: int = 1,
|
||||
use_multiprocessing: bool = False) -> Union[Dict[str, float], List[float]]:
|
||||
"""
|
||||
Returns the loss value and metrics values for the model in test model.
|
||||
|
||||
:param name: Name of the existing model to be trained.
|
||||
:param inputs: Input data. It can be:
|
||||
|
||||
- A numpy array (or array-like), or a list of arrays in case the model has multiple inputs.
|
||||
- A TensorFlow tensor, or a list of tensors in case the model has multiple inputs.
|
||||
- A dict mapping input names to the corresponding array/tensors, if the model has named inputs.
|
||||
- A ``tf.data`` dataset. Should return a tuple of either ``(inputs, targets)`` or
|
||||
``(inputs, targets, sample_weights)``.
|
||||
- A generator or ``keras.utils.Sequence`` returning ``(inputs, targets)`` or
|
||||
``(inputs, targets, sample weights)``.
|
||||
- A string that points to a file. Supported formats:
|
||||
|
||||
- CSV with header (``.csv`` extension``)
|
||||
- Numpy raw or compressed files (``.npy`` or ``.npz`` extension)
|
||||
|
||||
|
||||
:param outputs: Target data. Like the input data `x`, it can be a numpy array (or array-like) or TensorFlow tensor(s).
|
||||
It should be consistent with `x` (you cannot have Numpy inputs and tensor targets, or inversely).
|
||||
If `x` is a dataset, generator, or `keras.utils.Sequence` instance, `y` should not be specified
|
||||
(since targets will be obtained from `x`).
|
||||
|
||||
:param batch_size: Number of samples per gradient update. If unspecified, ``batch_size`` will default to 32.
|
||||
Do not specify the ``batch_size`` if your data is in the form of symbolic tensors, datasets,
|
||||
generators, or ``keras.utils.Sequence`` instances (since they generate batches).
|
||||
|
||||
:param verbose: Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch.
|
||||
Note that the progress bar is not particularly useful when
|
||||
logged to a file, so verbose=2 is recommended when not running
|
||||
interactively (eg, in a production environment).
|
||||
|
||||
:param sample_weight: Optional iterable/numpy array of weights for the training samples, used for weighting
|
||||
the loss function (during training only). You can either pass a flat (1D) numpy array/iterable with the
|
||||
same length as the input samples (1:1 mapping between weights and samples), or in the case of temporal data,
|
||||
you can pass a 2D array with shape ``(samples, sequence_length)``, to apply a different weight to every
|
||||
time step of every sample. In this case you should make sure to specify ``sample_weight_mode="temporal"``
|
||||
in ``compile()``. This argument is not supported when ``x`` is a dataset, generator, or
|
||||
``keras.utils.Sequence`` instance, instead provide the sample_weights as the third element of ``x``.
|
||||
|
||||
:param steps: Total number of steps (batches of samples) before declaring the evaluation round finished.
|
||||
Ignored with the default value of ``None``. If x is a ``tf.data`` dataset and ``steps`` is None, 'evaluate'
|
||||
will run until the dataset is exhausted. This argument is not supported with array inputs.
|
||||
|
||||
:param max_queue_size: Used for generator or ``keras.utils.Sequence`` input only. Maximum size for the generator
|
||||
queue. If unspecified, ``max_queue_size`` will default to 10.
|
||||
|
||||
:param workers: Used for generator or ``keras.utils.Sequence`` input only. Maximum number of processes
|
||||
to spin up when using process-based threading. If unspecified, ``workers`` will default to 1. If 0, will
|
||||
execute the generator on the main thread.
|
||||
|
||||
:param use_multiprocessing: Used for generator or ``keras.utils.Sequence`` input only. If ``True``,
|
||||
use process-based threading. If unspecified, ``use_multiprocessing`` will default to ``False``.
|
||||
Note that because this implementation relies on multiprocessing, you should not pass non-picklable
|
||||
arguments to the generator as they can't be passed easily to children processes.
|
||||
|
||||
:return: ``{test_metric: metric_value}`` dictionary if the ``metrics_names`` of the model are specified,
|
||||
otherwise a list with the result test metrics (loss is usually the first value).
|
||||
"""
|
||||
|
||||
model = self._load_model(name)
|
||||
inputs = self._get_data(inputs)
|
||||
if outputs:
|
||||
outputs = self._get_data(outputs)
|
||||
|
||||
ret = model.evaluate(
|
||||
x=inputs,
|
||||
y=outputs,
|
||||
batch_size=batch_size,
|
||||
verbose=verbose,
|
||||
sample_weight=sample_weight,
|
||||
steps=steps,
|
||||
callbacks=self._generate_callbacks(name),
|
||||
max_queue_size=max_queue_size,
|
||||
workers=workers,
|
||||
use_multiprocessing=use_multiprocessing
|
||||
)
|
||||
|
||||
ret = ret if isinstance(ret, list) else [ret]
|
||||
if not model.metrics_names:
|
||||
return ret
|
||||
|
||||
return {model.metrics_names[i]: value for i, value in enumerate(ret)}
|
||||
|
||||
@action
|
||||
def predict(self,
|
||||
name: str,
|
||||
inputs: Union[str, np.ndarray, Iterable, Dict[str, Union[Iterable, np.ndarray]]],
|
||||
batch_size: Optional[int] = None,
|
||||
verbose: int = 0,
|
||||
steps: Optional[int] = None,
|
||||
max_queue_size: int = 10,
|
||||
workers: int = 1,
|
||||
use_multiprocessing: bool = False) -> Union[Dict[str, float], List[float]]:
|
||||
"""
|
||||
Generates output predictions for the input samples.
|
||||
|
||||
:param name: Name of the existing model to be trained.
|
||||
:param inputs: Input data. It can be:
|
||||
|
||||
- A numpy array (or array-like), or a list of arrays in case the model has multiple inputs.
|
||||
- A TensorFlow tensor, or a list of tensors in case the model has multiple inputs.
|
||||
- A dict mapping input names to the corresponding array/tensors, if the model has named inputs.
|
||||
- A ``tf.data`` dataset. Should return a tuple of either ``(inputs, targets)`` or
|
||||
``(inputs, targets, sample_weights)``.
|
||||
- A generator or ``keras.utils.Sequence`` returning ``(inputs, targets)`` or
|
||||
``(inputs, targets, sample weights)``.
|
||||
- A string that points to a file. Supported formats:
|
||||
|
||||
- CSV with header (``.csv`` extension``)
|
||||
- Numpy raw or compressed files (``.npy`` or ``.npz`` extension)
|
||||
|
||||
|
||||
:param batch_size: Number of samples per gradient update. If unspecified, ``batch_size`` will default to 32.
|
||||
Do not specify the ``batch_size`` if your data is in the form of symbolic tensors, datasets,
|
||||
generators, or ``keras.utils.Sequence`` instances (since they generate batches).
|
||||
|
||||
:param verbose: Verbosity mode, 0 or 1.
|
||||
|
||||
:param steps: Total number of steps (batches of samples) before declaring the prediction round finished.
|
||||
Ignored with the default value of ``None``. If x is a ``tf.data`` dataset and ``steps`` is None, ``predict``
|
||||
will run until the input dataset is exhausted.
|
||||
|
||||
:param max_queue_size: Integer. Used for generator or ``keras.utils.Sequence`` input only. Maximum size for
|
||||
the generator queue (default: 10).
|
||||
|
||||
:param workers: Used for generator or ``keras.utils.Sequence`` input only. Maximum number of processes
|
||||
to spin up when using process-based threading. If unspecified, ``workers`` will default to 1. If 0, will
|
||||
execute the generator on the main thread.
|
||||
|
||||
:param use_multiprocessing: Used for generator or ``keras.utils.Sequence`` input only. If ``True``,
|
||||
use process-based threading. If unspecified, ``use_multiprocessing`` will default to ``False``.
|
||||
Note that because this implementation relies on multiprocessing, you should not pass non-picklable
|
||||
arguments to the generator as they can't be passed easily to children processes.
|
||||
|
||||
:return: ``{output_metric: metric_value}`` dictionary if the ``output_names`` of the model are specified,
|
||||
otherwise a list with the result values.
|
||||
"""
|
||||
model = self._load_model(name)
|
||||
inputs = self._get_data(inputs)
|
||||
ret = model.predict(
|
||||
inputs,
|
||||
batch_size=batch_size,
|
||||
verbose=verbose,
|
||||
steps=steps,
|
||||
callbacks=self._generate_callbacks(name),
|
||||
max_queue_size=max_queue_size,
|
||||
workers=workers,
|
||||
use_multiprocessing=use_multiprocessing
|
||||
)
|
||||
|
||||
if not model.output_names:
|
||||
return ret
|
||||
|
||||
return {model.output_names[i]: value for i, value in enumerate(ret)}
|
||||
|
||||
@action
|
||||
def save(self, name: str, overwrite: bool = True, **opts) -> None:
|
||||
"""
|
||||
Save a model in memory to the filesystem. The model files will be stored under
|
||||
``<WORKDIR>/models/<model_name>``.
|
||||
|
||||
:param name: Model name.
|
||||
:param overwrite: Overwrite the model files if they already exist.
|
||||
:param opts: Extra options to be passed to ``Model.save()``.
|
||||
"""
|
||||
assert name in self.models, 'No such model in memory: {}'.format(name)
|
||||
model_dir = os.path.join(self._models_dir, name)
|
||||
name = self.models[name]
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
name.save(model_dir, overwrite=overwrite, options=opts)
|
||||
|
||||
|
||||
# vim:sw=4:ts=4:et:
|
|
@ -252,3 +252,9 @@ croniter
|
|||
# qrcode
|
||||
# Pillow
|
||||
# pyzbar
|
||||
|
||||
# Support for Tensorflow
|
||||
# numpy
|
||||
# pandas
|
||||
# tensorflow>=2.0
|
||||
# keras
|
||||
|
|
2
setup.py
2
setup.py
|
@ -295,5 +295,7 @@ setup(
|
|||
'linode': ['linode_api4'],
|
||||
# Support for QR codes
|
||||
'qrcode': ['numpy','qrcode[pil]', 'Pillow', 'pyzbar'],
|
||||
# Support for Tensorflow
|
||||
'tensorflow': ['numpy', 'tensorflow>=2.0', 'keras', 'pandas'],
|
||||
},
|
||||
)
|
||||
|
|
Loading…
Reference in a new issue