forked from platypush/platypush
Set default values for metrics for regression and networks
This commit is contained in:
parent
50e372be36
commit
f4dcf688f0
1 changed files with 8 additions and 2 deletions
|
@ -238,7 +238,7 @@ class TensorflowPlugin(Plugin):
|
||||||
you could also pass a dictionary, such as
|
you could also pass a dictionary, such as
|
||||||
``metrics={'output_a': 'accuracy', 'output_b': ['accuracy', 'mse']}``. You can also pass a list
|
``metrics={'output_a': 'accuracy', 'output_b': ['accuracy', 'mse']}``. You can also pass a list
|
||||||
``(len = len(outputs))`` of lists of metrics such as ``metrics=[['accuracy'], ['accuracy', 'mse']]`` or
|
``(len = len(outputs))`` of lists of metrics such as ``metrics=[['accuracy'], ['accuracy', 'mse']]`` or
|
||||||
``metrics=['accuracy', ['accuracy', 'mse']]``.
|
``metrics=['accuracy', ['accuracy', 'mse']]``. Default: ``['accuracy']``.
|
||||||
|
|
||||||
:param loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to weight the
|
:param loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to weight the
|
||||||
loss contributions of different model outputs. The loss value that will be minimized by the model
|
loss contributions of different model outputs. The loss value that will be minimized by the model
|
||||||
|
@ -370,6 +370,9 @@ class TensorflowPlugin(Plugin):
|
||||||
layer = self._layer_from_dict(layer.pop('type'), **layer)
|
layer = self._layer_from_dict(layer.pop('type'), **layer)
|
||||||
model.add(layer)
|
model.add(layer)
|
||||||
|
|
||||||
|
if not metrics:
|
||||||
|
metrics = ['accuracy']
|
||||||
|
|
||||||
model.compile(
|
model.compile(
|
||||||
optimizer=optimizer,
|
optimizer=optimizer,
|
||||||
loss=loss,
|
loss=loss,
|
||||||
|
@ -433,7 +436,7 @@ class TensorflowPlugin(Plugin):
|
||||||
you could also pass a dictionary, such as
|
you could also pass a dictionary, such as
|
||||||
``metrics={'output_a': 'accuracy', 'output_b': ['accuracy', 'mse']}``. You can also pass a list
|
``metrics={'output_a': 'accuracy', 'output_b': ['accuracy', 'mse']}``. You can also pass a list
|
||||||
``(len = len(outputs))`` of lists of metrics such as ``metrics=[['accuracy'], ['accuracy', 'mse']]`` or
|
``(len = len(outputs))`` of lists of metrics such as ``metrics=[['accuracy'], ['accuracy', 'mse']]`` or
|
||||||
``metrics=['accuracy', ['accuracy', 'mse']]``.
|
``metrics=['accuracy', ['accuracy', 'mse']]``. Default: ``['mae', 'mse']``.
|
||||||
|
|
||||||
:param loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to weight the
|
:param loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to weight the
|
||||||
loss contributions of different model outputs. The loss value that will be minimized by the model
|
loss contributions of different model outputs. The loss value that will be minimized by the model
|
||||||
|
@ -501,6 +504,9 @@ class TensorflowPlugin(Plugin):
|
||||||
else:
|
else:
|
||||||
model.output_labels = []
|
model.output_labels = []
|
||||||
|
|
||||||
|
if not metrics:
|
||||||
|
metrics = ['mae', 'mse']
|
||||||
|
|
||||||
model.compile(
|
model.compile(
|
||||||
optimizer=optimizer,
|
optimizer=optimizer,
|
||||||
loss=loss,
|
loss=loss,
|
||||||
|
|
Loading…
Reference in a new issue