mirror of
https://github.com/BlackLight/fsom.git
synced 2024-11-23 20:25:11 +01:00
Big optimizations, now Lambert function uses static vectors of mus and alphas.
This commit is contained in:
parent
a4eaf22c08
commit
20b76cb928
4 changed files with 174 additions and 95 deletions
2
Makefile
2
Makefile
|
@ -1,4 +1,4 @@
|
|||
all:
|
||||
gcc -w *.c -o fsom_example
|
||||
gcc -w -O3 -pipe -fomit-frame-pointer -ffast-math *.c -o fsom_example
|
||||
clean:
|
||||
rm -f *.o fsom_example
|
68
example.c
68
example.c
|
@ -1,7 +1,65 @@
|
|||
/*
|
||||
* =====================================================================================
|
||||
*
|
||||
* Filename: example.c
|
||||
*
|
||||
* Description: Examle file to benchmark fsom library.
|
||||
*
|
||||
* Version: 0.1
|
||||
* Revision: none
|
||||
* Compiler: gcc
|
||||
*
|
||||
* Author: BlackLight (http://0x00.ath.cx), <blacklight@autistici.org>
|
||||
* Contributor: evilsocket (http://www.evilsocket.net), <evilsocket@gmail.com>
|
||||
* Licence: GNU GPL v.3
|
||||
* Company: DO WHAT YOU WANT CAUSE A PIRATE IS FREE, YOU ARE A PIRATE!
|
||||
*
|
||||
* =====================================================================================
|
||||
*/
|
||||
#include "fsom.h"
|
||||
|
||||
#include <alloca.h>
|
||||
#include <stdio.h>
|
||||
#include <sys/time.h>
|
||||
|
||||
static unsigned long prev_uticks = 0;
|
||||
|
||||
static unsigned long get_uticks(){
|
||||
struct timeval ts;
|
||||
gettimeofday(&ts,0);
|
||||
return ((ts.tv_sec * 1000000) + ts.tv_usec);
|
||||
}
|
||||
|
||||
static void start_timer(){
|
||||
prev_uticks = get_uticks();
|
||||
}
|
||||
|
||||
static void print_timing( const char *msg ){
|
||||
#define MS_DELTA (1000.0)
|
||||
#define SS_DELTA (MS_DELTA * 1000.0)
|
||||
#define MM_DELTA (SS_DELTA * 60.0)
|
||||
#define HH_DELTA (MM_DELTA * 60.0)
|
||||
|
||||
double ticks = get_uticks() - prev_uticks;
|
||||
|
||||
if( ticks < MS_DELTA ){
|
||||
printf( "%s\t : %lf us\n", msg, ticks );
|
||||
}
|
||||
else if( ticks < SS_DELTA ){
|
||||
printf( "%s\t : %lf ms\n", msg, ticks / MS_DELTA );
|
||||
}
|
||||
else if( ticks < MM_DELTA ){
|
||||
printf( "%s\t : %lf s\n", msg, ticks / SS_DELTA );
|
||||
}
|
||||
else if( ticks < HH_DELTA ){
|
||||
printf( "%s\t : %lf m\n", msg, ticks / MM_DELTA );
|
||||
}
|
||||
else{
|
||||
printf( "%s\t : %lf h\n", msg, ticks / HH_DELTA );
|
||||
}
|
||||
|
||||
start_timer();
|
||||
}
|
||||
|
||||
#define VECTORS 10
|
||||
#define INPUTS 20
|
||||
|
@ -29,6 +87,8 @@ main ( int argc, char *argv[] )
|
|||
}
|
||||
}
|
||||
|
||||
start_timer();
|
||||
|
||||
net = som_network_new ( INPUTS, OUT_ROWS, OUT_COLS );
|
||||
|
||||
if ( !net )
|
||||
|
@ -37,9 +97,13 @@ main ( int argc, char *argv[] )
|
|||
return 1;
|
||||
}
|
||||
|
||||
print_timing( "Network Creation" );
|
||||
|
||||
som_init_weights ( net, data, INPUTS );
|
||||
som_train ( net, data, VECTORS, TRAIN_STEPS );
|
||||
|
||||
print_timing( "Network Training" );
|
||||
|
||||
for ( i=0; i < INPUTS; ++i )
|
||||
{
|
||||
som_set_inputs ( net, data[i] );
|
||||
|
@ -47,5 +111,9 @@ main ( int argc, char *argv[] )
|
|||
// printf ( "best coordinates [%u]: %u,%u\n", i, x, y );
|
||||
}
|
||||
|
||||
print_timing( "Input Recognition" );
|
||||
|
||||
som_network_destroy ( net );
|
||||
|
||||
print_timing( "Network Destruction" );
|
||||
}
|
||||
|
|
174
fsom.c
174
fsom.c
|
@ -11,6 +11,7 @@
|
|||
* Compiler: gcc
|
||||
*
|
||||
* Author: BlackLight (http://0x00.ath.cx), <blacklight@autistici.org>
|
||||
* Contributor: evilsocket (http://www.evilsocket.net), <evilsocket@gmail.com>
|
||||
* Licence: GNU GPL v.3
|
||||
* Company: DO WHAT YOU WANT CAUSE A PIRATE IS FREE, YOU ARE A PIRATE!
|
||||
*
|
||||
|
@ -81,41 +82,15 @@ som_synapsis_new ( som_neuron_t *input_neuron, som_neuron_t *output_neuron, doub
|
|||
* \brief Create a new neuron
|
||||
* \return The new neuron
|
||||
*/
|
||||
|
||||
static som_neuron_t*
|
||||
som_neuron_new ()
|
||||
{
|
||||
som_neuron_t *neuron = NULL;
|
||||
|
||||
if ( !( neuron = ( som_neuron_t* ) malloc ( sizeof ( som_neuron_t ))))
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
neuron->output = 0.0;
|
||||
neuron->input = 0.0;
|
||||
neuron->synapses = NULL;
|
||||
neuron->synapses_count = 0;
|
||||
|
||||
return neuron;
|
||||
} /* ----- end of function som_neuron_new ----- */
|
||||
#define som_neuron_new() ( som_neuron_t *)calloc( 1, sizeof ( som_neuron_t ) )
|
||||
/* ----- end of macro som_neuron_new ----- */
|
||||
|
||||
/**
|
||||
* \brief Deallocate a neuron
|
||||
* \param neuron Neuron to be deallocated
|
||||
*/
|
||||
|
||||
static void
|
||||
som_neuron_destroy ( som_neuron_t *neuron )
|
||||
{
|
||||
if ( !neuron )
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
free ( neuron );
|
||||
neuron = NULL;
|
||||
} /* ----- end of function som_neuron_destroy ----- */
|
||||
#define som_neuron_destroy( neuron ) if( neuron ){ free(neuron); neuron = NULL; }
|
||||
/* ----- end of macro som_neuron_destroy ----- */
|
||||
|
||||
/**
|
||||
* \brief Create a new input layer
|
||||
|
@ -151,7 +126,6 @@ som_input_layer_new ( size_t neurons_count )
|
|||
for ( j=0; j < i; ++j )
|
||||
{
|
||||
som_neuron_destroy ( layer->neurons[j] );
|
||||
layer->neurons[j] = NULL;
|
||||
}
|
||||
|
||||
free ( layer->neurons );
|
||||
|
@ -221,7 +195,6 @@ som_output_layer_new ( size_t neurons_rows, size_t neurons_cols )
|
|||
for ( l=0; l < j; ++l )
|
||||
{
|
||||
som_neuron_destroy ( layer->neurons[k][l] );
|
||||
layer->neurons[k][l] = NULL;
|
||||
}
|
||||
|
||||
free ( layer->neurons[k] );
|
||||
|
@ -279,13 +252,11 @@ som_network_new ( size_t input_neurons, size_t output_neurons_rows, size_t outpu
|
|||
som_network_t *net = NULL;
|
||||
srand ( time ( NULL ));
|
||||
|
||||
if ( !( net = ( som_network_t* ) malloc ( sizeof ( som_network_t ))))
|
||||
if ( !( net = ( som_network_t* ) calloc ( 1, sizeof ( som_network_t ))))
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
memset ( net, 0, sizeof ( som_network_t ));
|
||||
|
||||
if ( !( net->input_layer = som_input_layer_new ( input_neurons )))
|
||||
{
|
||||
free ( net );
|
||||
|
@ -359,7 +330,6 @@ som_input_layer_destroy ( som_network_t *net )
|
|||
}
|
||||
|
||||
som_neuron_destroy ( net->input_layer->neurons[i] );
|
||||
net->input_layer->neurons[i] = NULL;
|
||||
}
|
||||
|
||||
free ( net->input_layer->neurons );
|
||||
|
@ -406,7 +376,6 @@ som_output_layer_destroy ( som_network_t *net )
|
|||
}
|
||||
|
||||
som_neuron_destroy ( net->output_layer->neurons[i][j] );
|
||||
net->output_layer->neurons[i][j] = NULL;
|
||||
}
|
||||
|
||||
free ( net->output_layer->neurons[i] );
|
||||
|
@ -468,25 +437,27 @@ double
|
|||
som_get_best_neuron_coordinates ( som_network_t *net, size_t *x, size_t *y )
|
||||
{
|
||||
size_t i = 0,
|
||||
j = 0,
|
||||
k = 0;
|
||||
j = 0,
|
||||
k = 0;
|
||||
|
||||
double mod = 0.0,
|
||||
best_dist = 0.0;
|
||||
double mod = 0.0,
|
||||
best_dist = DBL_MAX;
|
||||
|
||||
som_neuron_t *neuron;
|
||||
|
||||
for ( i=0; i < net->output_layer->neurons_rows; ++i )
|
||||
{
|
||||
for ( j=0; j < net->output_layer->neurons_cols; ++j )
|
||||
{
|
||||
mod = 0.0;
|
||||
mod = 0.0;
|
||||
neuron = net->output_layer->neurons[i][j];
|
||||
|
||||
for ( k=0; k < net->output_layer->neurons[i][j]->synapses_count; ++k )
|
||||
for ( k=0; k < neuron->synapses_count; ++k )
|
||||
{
|
||||
mod += ( net->input_layer->neurons[k]->input - net->output_layer->neurons[i][j]->synapses[k]->weight ) *
|
||||
( net->input_layer->neurons[k]->input - net->output_layer->neurons[i][j]->synapses[k]->weight );
|
||||
mod += pow( net->input_layer->neurons[k]->input - neuron->synapses[k]->weight, 2 );
|
||||
}
|
||||
|
||||
if (( i == 0 && j == 0 ) || ( mod < best_dist ))
|
||||
if ( mod < best_dist )
|
||||
{
|
||||
best_dist = mod;
|
||||
*x = i;
|
||||
|
@ -501,50 +472,44 @@ som_get_best_neuron_coordinates ( som_network_t *net, size_t *x, size_t *y )
|
|||
/**
|
||||
* \brief Get the n-th approximated step of the analytic continuation of the Lambert W-function of a real number x (see "Numerical Evaluation of the Lambert W Function and Application to Generation of Generalized Gaussian Noise With Exponent 1/2" from Chapeau-Blondeau and Monir, IEEE Transactions on Signal Processing, vol.50, no.9, Sep.2002)
|
||||
* \param x Input variable of which we're going to compute W[-1](x)
|
||||
* \param n Number of steps in the series computation
|
||||
* \return W[-1](x)
|
||||
*/
|
||||
|
||||
static double
|
||||
lambert_W1_function ( double x, int n )
|
||||
lambert_W1_function ( som_network_t *net, double x )
|
||||
{
|
||||
int j = 0,
|
||||
k = 0;
|
||||
|
||||
double *alphas = NULL,
|
||||
*mus = NULL,
|
||||
p = 0.0,
|
||||
res = 0.0,
|
||||
k_plus = 0,
|
||||
k_less = 0;
|
||||
|
||||
if ( !( alphas = (double*) alloca ( (n+1) * sizeof ( double ))))
|
||||
return 0.0;
|
||||
|
||||
if ( !( mus = (double*) alloca ( (n+1) * sizeof ( double ))))
|
||||
return 0.0;
|
||||
double p = 0.0,
|
||||
res = 0.0,
|
||||
k_plus = 0,
|
||||
k_less = 0;
|
||||
|
||||
p = - sqrt ( 2 * ( M_E * x + 1 ));
|
||||
|
||||
mus[0] = -1;
|
||||
mus[1] = 1;
|
||||
alphas[0] = 2;
|
||||
alphas[1] = -1;
|
||||
for ( k=2; k < n; ++k )
|
||||
net->mus[0] = -1;
|
||||
net->mus[1] = 1;
|
||||
net->alphas[0] = 2;
|
||||
net->alphas[1] = -1;
|
||||
for ( k=2; k < TAYLOR_LAMBERT_LAST_ELEMENT; ++k )
|
||||
{
|
||||
alphas[k] = 0.0;
|
||||
net->alphas[k] = 0.0;
|
||||
|
||||
for ( j=2; j < k; ++j )
|
||||
{
|
||||
alphas[k] += mus[j] * mus[ k - j + 1 ];
|
||||
net->alphas[k] += net->mus[j] * net->mus[ k - j + 1 ];
|
||||
}
|
||||
|
||||
k_plus = k + 1;
|
||||
k_less = k - 1;
|
||||
|
||||
mus[k] = (k_less / k_plus) * ( (mus[k-2] / 2.0) + (alphas[k-2] / 4.0) ) - ( alphas[k] / 2.0 ) - ( mus[(int)k_less] / k_plus );
|
||||
net->mus[k] = (k_less / k_plus) *
|
||||
( (net->mus[k-2] / 2.0) + ( net->alphas[k-2] / 4.0) ) -
|
||||
( net->alphas[k] / 2.0 ) -
|
||||
( net->mus[(int)k_less] / k_plus );
|
||||
|
||||
res += ( mus[k] * pow ( p, k ) );
|
||||
res += ( net->mus[k] * pow ( p, k ) );
|
||||
}
|
||||
|
||||
return res;
|
||||
|
@ -572,7 +537,7 @@ som_learning_rate ( som_network_t* net, size_t t, double M, size_t N )
|
|||
{
|
||||
K = ( M * (double) N * M_E ) / 0.01;
|
||||
W_arg = -((double) N ) / K;
|
||||
W = lambert_W1_function ( W_arg, 1000 );
|
||||
W = lambert_W1_function ( net, W_arg );
|
||||
T = K * exp ( W );
|
||||
net->T_learning_param = T;
|
||||
} else {
|
||||
|
@ -592,10 +557,11 @@ som_learning_rate ( som_network_t* net, size_t t, double M, size_t N )
|
|||
* \return Learning rate
|
||||
*/
|
||||
|
||||
static double
|
||||
INLINE double
|
||||
som_learning_rate_fast ( som_network_t* net, size_t t, double M, size_t N )
|
||||
{
|
||||
return M * ( (double) t / net->T_learning_param) * exp ( 1 - ( (double) t / net->T_learning_param ));
|
||||
double inv_lrate = (double) t / net->T_learning_param;
|
||||
return M * inv_lrate * exp ( 1 - inv_lrate );
|
||||
} /* ----- end of function som_learning_rate ----- */
|
||||
|
||||
/**
|
||||
|
@ -802,48 +768,80 @@ som_init_weights ( som_network_t *net, double **data, size_t n_data )
|
|||
}
|
||||
}
|
||||
|
||||
size_t last_out_row = out_rows - 1;
|
||||
som_neuron_t *j_neuron,
|
||||
*br_edge = net->output_layer->neurons[ last_out_row ][ last_out_col ],
|
||||
*bl_edge = net->output_layer->neurons[ last_out_row ][0];
|
||||
for ( j=1; j < out_cols - 1; ++j )
|
||||
{
|
||||
j_neuron = net->output_layer->neurons[last_out_row][j];
|
||||
a = (double)(j - 1) / (double)last_out_col;
|
||||
b = (double)(out_cols - j) / (double)last_out_col;
|
||||
|
||||
for ( k=0; k < in_size; ++k )
|
||||
{
|
||||
net->output_layer->neurons[ out_rows - 1 ][j]->synapses[k]->weight =
|
||||
( ((double) j - 1) / ((double) out_cols - 1 )) * net->output_layer->neurons[ out_rows - 1 ][ out_cols - 1 ]->synapses[k]->weight +
|
||||
( (double) ( out_cols - j ) / ((double) out_cols - 1 )) * net->output_layer->neurons[ out_rows - 1 ][0]->synapses[k]->weight;
|
||||
j_neuron->synapses[k]->weight = a * br_edge->synapses[k]->weight + b * bl_edge->synapses[k]->weight;
|
||||
}
|
||||
}
|
||||
|
||||
som_neuron_t *i_neuron,
|
||||
*tl_edge = net->output_layer->neurons[0][0];
|
||||
for ( i=1; i < out_rows - 1; ++i )
|
||||
{
|
||||
i_neuron = net->output_layer->neurons[i][0];
|
||||
a = ( ((double) i - 1) / (double) last_out_row );
|
||||
b = ( (double) ( out_rows - i ) / (double)last_out_row);
|
||||
for ( k=0; k < in_size; ++k )
|
||||
{
|
||||
net->output_layer->neurons[i][0]->synapses[k]->weight =
|
||||
( ((double) i - 1) / ((double) out_rows - 1 )) * net->output_layer->neurons[ out_rows-1 ][0]->synapses[k]->weight +
|
||||
( (double) ( out_rows - i ) / ((double) out_rows - 1 )) * net->output_layer->neurons[0][0]->synapses[k]->weight;
|
||||
i_neuron->synapses[k]->weight = a * bl_edge->synapses[k]->weight + b * tl_edge->synapses[k]->weight;
|
||||
}
|
||||
}
|
||||
|
||||
som_neuron_t *tr_edge = net->output_layer->neurons[0][ last_out_col ];
|
||||
for ( i=1; i < out_rows - 1; ++i )
|
||||
{
|
||||
i_neuron = net->output_layer->neurons[i][ last_out_col ];
|
||||
a = ( ((double) i - 1) / ((double) last_out_row ));
|
||||
b = ( (double) ( out_rows - i ) / ((double) last_out_row ));
|
||||
for ( k=0; k < in_size; ++k )
|
||||
{
|
||||
net->output_layer->neurons[i][ out_cols - 1 ]->synapses[k]->weight =
|
||||
( ((double) i - 1) / ((double) out_rows - 1 )) * net->output_layer->neurons[ out_rows - 1 ][ out_cols - 1 ]->synapses[k]->weight +
|
||||
( (double) ( out_rows - i ) / ((double) out_rows - 1 )) * net->output_layer->neurons[0][ out_cols - 1 ]->synapses[k]->weight;
|
||||
i_neuron->synapses[k]->weight = a * br_edge->synapses[k]->weight + b * tr_edge->synapses[k]->weight;
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize the weights in the middle of the matrix */
|
||||
som_neuron_t *ij_neuron;
|
||||
double sqr_index = (double) last_out_row * (double) last_out_col,
|
||||
prev_i,
|
||||
prev_j,
|
||||
prev_out_rows,
|
||||
prev_out_cols,
|
||||
c,
|
||||
d;
|
||||
for ( i=1; i < out_rows - 1; ++i )
|
||||
{
|
||||
prev_i = i - 1;
|
||||
prev_out_rows = out_rows - i;
|
||||
for ( j=1; j < out_cols - 1; ++j )
|
||||
{
|
||||
prev_j = j - 1;
|
||||
ij_neuron = net->output_layer->neurons[i][j];
|
||||
prev_out_cols = out_cols - j;
|
||||
a = ( prev_j * prev_i ) / sqr_index;
|
||||
b = ( prev_j * prev_out_rows ) / sqr_index;
|
||||
c = ( prev_out_cols * prev_i ) / sqr_index;
|
||||
d = ( prev_out_cols * prev_out_rows ) / sqr_index;
|
||||
for ( k=0; k < in_size; ++k )
|
||||
{
|
||||
net->output_layer->neurons[i][j]->synapses[k]->weight =
|
||||
( (((double) j - 1)*((double) i - 1)) / (((double) out_rows - 1)*((double) out_cols - 1))) * net->output_layer->neurons[ out_rows - 1 ][ out_cols - 1 ]->synapses[k]->weight +
|
||||
( (((double) j - 1)*(double) (out_rows - i)) / (((double) out_rows - 1)*((double) out_cols - 1))) * net->output_layer->neurons[0][ out_cols - 1 ]->synapses[k]->weight +
|
||||
( ((double) (out_cols - j)*((double) i - 1)) / (((double) out_rows - 1)*((double) out_cols - 1))) * net->output_layer->neurons[ out_rows - 1 ][0]->synapses[k]->weight +
|
||||
( ((double) (out_cols - j)*(double) (out_rows - i)) / (((double) out_rows - 1)*((double) out_cols - 1))) * net->output_layer->neurons[0][0]->synapses[k]->weight;
|
||||
ij_neuron->synapses[k]->weight =
|
||||
a *
|
||||
br_edge->synapses[k]->weight +
|
||||
b *
|
||||
tr_edge->synapses[k]->weight +
|
||||
c *
|
||||
bl_edge->synapses[k]->weight +
|
||||
d *
|
||||
tl_edge->synapses[k]->weight;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -943,13 +941,11 @@ som_deserialize ( const char* fname )
|
|||
return NULL;
|
||||
}
|
||||
|
||||
if ( !( net = ( som_network_t* ) malloc ( sizeof ( som_network_t ))))
|
||||
if ( !( net = ( som_network_t* ) calloc ( 1, sizeof ( som_network_t ))))
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
memset ( net, 0, sizeof ( som_network_t ));
|
||||
|
||||
fread ( &(net->serialization_time), sizeof ( time_t ), 1, fp );
|
||||
fread ( &(net->T_learning_param ), sizeof ( double ), 1, fp );
|
||||
fread ( &input_neurons, sizeof ( size_t ), 1, fp );
|
||||
|
|
25
fsom.h
25
fsom.h
|
@ -11,6 +11,7 @@
|
|||
* Compiler: gcc
|
||||
*
|
||||
* Author: BlackLight (http://0x00.ath.cx), <blacklight@autistici.org>
|
||||
* Contributor: evilsocket (http://www.evilsocket.net), <evilsocket@gmail.com>
|
||||
* Licence: GNU GPL v.3
|
||||
* Company: DO WHAT YOU WANT CAUSE A PIRATE IS FREE, YOU ARE A PIRATE!
|
||||
*
|
||||
|
@ -23,37 +24,51 @@
|
|||
#include <stddef.h>
|
||||
#include <time.h>
|
||||
|
||||
#define TAYLOR_LAMBERT_ELEMENTS 1001
|
||||
#define TAYLOR_LAMBERT_LAST_ELEMENT 1000
|
||||
|
||||
#ifndef INLINE
|
||||
# define INLINE __inline__ __attribute__((always_inline))
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
double output;
|
||||
double input;
|
||||
|
||||
struct som_synapsis_s **synapses;
|
||||
size_t synapses_count;
|
||||
} som_neuron_t;
|
||||
} som_neuron_t
|
||||
__attribute__ ((aligned));;
|
||||
|
||||
typedef struct som_synapsis_s {
|
||||
som_neuron_t *neuron_in;
|
||||
som_neuron_t *neuron_out;
|
||||
double weight;
|
||||
} som_synapsis_t;
|
||||
} som_synapsis_t
|
||||
__attribute__ ((aligned));
|
||||
|
||||
typedef struct {
|
||||
som_neuron_t **neurons;
|
||||
size_t neurons_count;
|
||||
} som_input_layer_t;
|
||||
} som_input_layer_t
|
||||
__attribute__ ((aligned));
|
||||
|
||||
typedef struct {
|
||||
som_neuron_t ***neurons;
|
||||
size_t neurons_rows;
|
||||
size_t neurons_cols;
|
||||
} som_output_layer_t;
|
||||
} som_output_layer_t
|
||||
__attribute__ ((aligned));
|
||||
|
||||
typedef struct {
|
||||
som_input_layer_t *input_layer;
|
||||
som_output_layer_t *output_layer;
|
||||
double T_learning_param;
|
||||
time_t serialization_time;
|
||||
} som_network_t;
|
||||
double alphas[TAYLOR_LAMBERT_ELEMENTS];
|
||||
double mus[TAYLOR_LAMBERT_ELEMENTS];
|
||||
} som_network_t
|
||||
__attribute__ ((aligned));
|
||||
|
||||
void som_network_destroy ( som_network_t* );
|
||||
void som_set_inputs ( som_network_t*, double* );
|
||||
|
|
Loading…
Reference in a new issue