mirror of
https://github.com/BlackLight/neuralpp.git
synced 2025-01-01 13:45:11 +01:00
65 lines
9.6 KiB
HTML
65 lines
9.6 KiB
HTML
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||
|
<html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
|
||
|
<title>Neural++: Member List</title>
|
||
|
<link href="doxygen.css" rel="stylesheet" type="text/css">
|
||
|
<link href="tabs.css" rel="stylesheet" type="text/css">
|
||
|
</head><body>
|
||
|
<!-- Generated by Doxygen 1.5.6 -->
|
||
|
<div class="navigation" id="top">
|
||
|
<div class="tabs">
|
||
|
<ul>
|
||
|
<li><a href="index.html"><span>Main Page</span></a></li>
|
||
|
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
|
||
|
<li class="current"><a href="annotated.html"><span>Classes</span></a></li>
|
||
|
<li><a href="files.html"><span>Files</span></a></li>
|
||
|
</ul>
|
||
|
</div>
|
||
|
<div class="tabs">
|
||
|
<ul>
|
||
|
<li><a href="annotated.html"><span>Class List</span></a></li>
|
||
|
<li><a href="functions.html"><span>Class Members</span></a></li>
|
||
|
</ul>
|
||
|
</div>
|
||
|
</div>
|
||
|
<div class="contents">
|
||
|
<h1>neuralpp::NeuralNet Member List</h1>This is the complete list of members for <a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a>, including all inherited members.<p><table>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#c1469e6afd87d85b82f14bc246f82457">actv_f</a></td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [private]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#28b9966c5f197b8e86d57dd104aa32a6">closeXML</a>(string &xml)</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [static]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#62695a82dfb1df758a44150921aec8e0">commitChanges</a>(Layer *l)</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [private]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#df44689f4e6201ca1ddc67655cce3576">deriv</a></td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [private]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#4cb52dae7b43d03fac73afca7b9f3a51">epochs</a></td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [private]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#8a140d28e6dd4097470c7c138801ad01">error</a>(double ex)</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [private]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#261f5f68fcc5be54250cfa03945266dd">ex</a></td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [private]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#423fd38a61d79905dcc12da84c805114">expected</a>()</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#94c36c94060e785ea67a0014c4182f8f5ec2727c0756ddb097b53efe49b81afb">file</a> enum value</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#7de7ee318eeb791d21a01e9e9e0e8c5a">getOutput</a>()</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#a6b8bf3800b43b58843c65fc431207ae">getOutputs</a>()</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#bbdaa1b6c0a1a95d2b18cd25fda2a266">hidden</a></td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [private]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#45c7645d4affe65752d37cd230afba24">initXML</a>(string &xml)</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [static]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#e2b4e8405f9d25edab395d61502bdba9">input</a></td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [private]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#6bd7be443e46b2fdbf1da2edb8e611ab">l_rate</a></td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [private]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#46f23f462318a4ffc037a4e806364c3f">link</a>()</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#92b145f2f6f00bf1ba645ce2235882c2">NeuralNet</a>()</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [inline]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#c79534c7c0dfb20d1d03be2ad7569b78">NeuralNet</a>(size_t in_size, size_t hidden_size, size_t out_size, double l, int e)</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#88380cb002edcccf11b59f6d3f6c94c9">NeuralNet</a>(const char *file)</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#b4b261f7f7fa93c45855288fd66cfdca">NeuralNet</a>(size_t in_size, size_t hidden_size, size_t out_size, double(*actv)(double), double(*deriv)(double), double l, int e)</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#fa9b2dbcbb39d0fc70f790ac24069a74">output</a></td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [private]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#c129c180647362da963758bfd1ba6890">propagate</a>()</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#4f88106c9e542c39eac43b4ca1974a2a">ref_epochs</a></td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [private]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#5db8d6ba4785f732da6e642b4f8f11a0">save</a>(const char *fname)</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#b6475762b7e9eab086befdc511f7c236">setExpected</a>(double ex)</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#0de170e8ab561ad63d0739b4c4b74f68">setInput</a>(vector< double > &v)</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#94c36c94060e785ea67a0014c4182f8f">source</a> enum name</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#e07af23ceb8666518da0c035bf1e0376">split</a>(char delim, string str)</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [static]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#94c36c94060e785ea67a0014c4182f8f6d06b4fe9414a158c97aee1a3679a904">str</a> enum value</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#e8b8741d28bec1354db555eabe418cb6">train</a>(string xml, source xrc)</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#b0bd1daadb06980dff1f50d33a7c098e">update</a>()</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#94169c89a7cd47122ab5dbf1d5c5e108">updateWeights</a>()</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [private]</code></td></tr>
|
||
|
<tr class="memlist"><td><a class="el" href="classneuralpp_1_1NeuralNet.html#4be31ecb0b543a192997bd83c6995ccb">XMLFromSet</a>(int id, string set)</td><td><a class="el" href="classneuralpp_1_1NeuralNet.html">neuralpp::NeuralNet</a></td><td><code> [static]</code></td></tr>
|
||
|
</table></div>
|
||
|
<hr size="1"><address style="text-align: right;"><small>Generated on Sun Aug 9 11:11:18 2009 for Neural++ by
|
||
|
<a href="http://www.doxygen.org/index.html">
|
||
|
<img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.6 </small></address>
|
||
|
</body>
|
||
|
</html>
|