mirror of
https://github.com/BlackLight/neuralpp.git
synced 2024-11-16 06:47:16 +01:00
50 lines
1.2 KiB
TeX
50 lines
1.2 KiB
TeX
|
\section{examples/doAdd.cpp}
|
||
|
Show how to use a network already trained and saved to a binary file. In this case, a network trained to simply perform sums between two real numbers, that should have already been created using learnAdd.
|
||
|
|
||
|
|
||
|
|
||
|
\begin{DocInclude}\begin{verbatim}
|
||
|
#include <iostream>
|
||
|
#include <neural++.hpp>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace neuralpp;
|
||
|
|
||
|
#define NETFILE "adder.net"
|
||
|
|
||
|
int main() {
|
||
|
double a,b;
|
||
|
NeuralNet net;
|
||
|
|
||
|
// Load the pre-trained network from "adder.net" file
|
||
|
try {
|
||
|
net = NeuralNet(NETFILE);
|
||
|
}
|
||
|
|
||
|
catch (NetworkFileNotFoundException e) {
|
||
|
cerr << "Fatal error while opening " << NETFILE << ": " << e.what();
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
cout << "First number to add: ";
|
||
|
cin >> a;
|
||
|
|
||
|
cout << "Second number to add: ";
|
||
|
cin >> b;
|
||
|
|
||
|
vector<double> v;
|
||
|
v.push_back(a);
|
||
|
v.push_back(b);
|
||
|
|
||
|
// Set the numbers just read as input values, propagate those values, and get
|
||
|
// the output
|
||
|
net.setInput(v);
|
||
|
net.propagate();
|
||
|
cout << "Neural net output: " << net.getOutput() << endl;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
\end{verbatim}
|
||
|
\end{DocInclude}
|
||
|
|