Fixing more and more

This commit is contained in:
blacklight 2009-08-16 15:29:54 +02:00
parent 25996a5e70
commit 73f13abb56
2 changed files with 57 additions and 53 deletions

View file

@ -50,8 +50,7 @@ namespace neuralpp {
int epochs; int epochs;
int ref_epochs; int ref_epochs;
double l_rate; double l_rate;
//double ex; std::vector<double> expect;
std::vector<double> ex;
/** /**
* @brief It updates the weights of the net's synapsis through back-propagation. * @brief It updates the weights of the net's synapsis through back-propagation.
@ -71,7 +70,7 @@ namespace neuralpp {
* @param ex Expected value * @param ex Expected value
* @return Mean error * @return Mean error
*/ */
double error(double ex) const; double error (double ex);
/** /**
* @brief Private pointer to function, containing the function to * @brief Private pointer to function, containing the function to

View file

@ -11,8 +11,10 @@
* this program. If not, see <http://www.gnu.org/licenses/>. * * this program. If not, see <http://www.gnu.org/licenses/>. *
**************************************************************************************************/ **************************************************************************************************/
#include <iostream>
#include <fstream> #include <fstream>
#include <sstream> #include <sstream>
using namespace std; using namespace std;
#include "neural++.hpp" #include "neural++.hpp"
@ -70,8 +72,14 @@ namespace neuralpp {
return v; return v;
} }
double NeuralNet::error(double expected) const { double NeuralNet::error(double expected) {
return 0.5*(getOutput()-expected)*(getOutput()-expected); double err = 0.0;
vector<double> out = getOutputs();
for (size_t i=0; i < output->size(); i++)
err += 0.5*(out[i] - expect[i]) * (out[i] - expect[i]);
return err;
} }
void NeuralNet::propagate() { void NeuralNet::propagate() {
@ -89,58 +97,71 @@ namespace neuralpp {
} }
void NeuralNet::setExpected(double e) { void NeuralNet::setExpected(double e) {
ex.clear(); expect.clear();
ex.push_back(e); expect.push_back(e);
}
void NeuralNet::setExpected(vector<double> e) {
expect.clear();
expect.assign(e.begin(), e.end());
} }
double NeuralNet::expected() const { double NeuralNet::expected() const {
return ex[0]; return expect[0];
}
vector<double> NeuralNet::getExpected() const {
return expect;
} }
void NeuralNet::updateWeights() { void NeuralNet::updateWeights() {
double out_delta; double Dk = 0.0;
size_t k = output->size();
for (size_t i = 0; i < output->size(); i++) { for (size_t i = 0; i < k; i++) {
Neuron *n = &(*output)[i]; Neuron *n = &(*output)[i];
double out_delta = 0.0,
z = n->getActv(),
d = expect[i],
f = df(actv_f, n->getProp());
for (size_t j = 0; j < n->nIn(); j++) { for (size_t j = 0; j < n->nIn(); j++) {
Synapsis *s = &(n->synIn(j)); Synapsis *s = &(n->synIn(j));
double y = s->getIn()->getActv(),
beta = s->momentum(ref_epochs, ref_epochs - epochs);
if (ref_epochs - epochs > 0) if (ref_epochs - epochs > 0)
out_delta = out_delta =
(-l_rate) * (getOutput() - expected()) * (-l_rate) * (z-d) * f * y +
df(actv_f, n->getProp()) * s->getIn()->getActv() + beta * s->getPrevDelta();
s->momentum(ref_epochs, ref_epochs - epochs) *
s->getPrevDelta();
else else
out_delta = out_delta =
(-l_rate) * (getOutput() - expected()) * (-l_rate) * (z-d) * f * y;
df(actv_f, n->getProp()) * s->getIn()->getActv();
Dk += ( (z-d) * f * s->getWeight() );
s->setDelta(out_delta); s->setDelta(out_delta);
} }
} }
for (size_t i = 0; i < hidden->size(); i++) { for (size_t i = 0; i < hidden->size(); i++) {
Neuron *n = &(*hidden)[i]; Neuron *n = &(*hidden)[i];
double d = double hidden_delta = 0.0,
df(actv_f, n->getProp()) * d = df(actv_f, n->getProp()) * Dk;
n->synOut(0).getWeight() * out_delta;
for (size_t j = 0; j < n->nIn(); j++) { for (size_t j = 0; j < n->nIn(); j++) {
Synapsis *s = &(n->synIn(j)); Synapsis *s = &(n->synIn(j));
double x = s->getIn()->getActv(),
beta = s->momentum(ref_epochs, ref_epochs - epochs);
if (ref_epochs - epochs > 0) if (ref_epochs - epochs > 0)
s->setDelta((-l_rate) * d * hidden_delta =
s->getIn()->getActv() + (-l_rate) * d * x +
s->momentum(ref_epochs, beta * s->getPrevDelta();
ref_epochs
-
epochs) *
s->getPrevDelta());
else else
s->setDelta((-l_rate) * d * hidden_delta =
s->getIn()->getActv()); (-l_rate) * d * x;
s->setDelta(hidden_delta);
} }
} }
} }
@ -153,7 +174,7 @@ namespace neuralpp {
Synapsis *s = &(n->synIn(j)); Synapsis *s = &(n->synIn(j));
s->setWeight(s->getWeight() + s->setWeight(s->getWeight() +
s->getDelta()); s->getDelta());
s->setDelta(0); s->setDelta(0.0);
} }
} }
} }
@ -180,7 +201,7 @@ namespace neuralpp {
record.epochs = ref_epochs; record.epochs = ref_epochs;
record.l_rate = l_rate; record.l_rate = l_rate;
record.ex = ex[0]; record.ex = expect[0];
if (out.write((char*) &record, sizeof(struct netrecord)) <= 0) if (out.write((char*) &record, sizeof(struct netrecord)) <= 0)
throw NetworkFileWriteException(); throw NetworkFileWriteException();
@ -416,7 +437,6 @@ namespace neuralpp {
void NeuralNet::train(string xmlsrc, NeuralNet::source src = void NeuralNet::train(string xmlsrc, NeuralNet::source src =
file) throw(InvalidXMLException) { file) throw(InvalidXMLException) {
double out;
CMarkup xml; CMarkup xml;
if (src == file) if (src == file)
@ -432,8 +452,7 @@ namespace neuralpp {
if (xml.FindElem("NETWORK")) { if (xml.FindElem("NETWORK")) {
while (xml.FindChildElem("TRAINING")) { while (xml.FindChildElem("TRAINING")) {
vector<double> input; vector<double> input;
double output; vector<double> output;
bool valid = false;
xml.IntoElem(); xml.IntoElem();
@ -445,34 +464,20 @@ namespace neuralpp {
xml.OutOfElem(); xml.OutOfElem();
} }
if (xml.FindChildElem("OUTPUT")) { while (xml.FindChildElem("OUTPUT")) {
xml.IntoElem(); xml.IntoElem();
output = output.push_back( atof(xml.GetData().c_str()) );
atof(xml.GetData().c_str());
xml.OutOfElem(); xml.OutOfElem();
} }
xml.OutOfElem(); xml.OutOfElem();
while (!valid) { setInput(input);
stringstream ss(stringstream::in | stringstream::out); propagate();
setExpected(output);
setInput(input); update();
propagate();
setExpected(output);
update();
out = getOutput();
ss << out;
if (ss.str().find("inf") == string::npos)
valid = true;
}
} }
} }
return;
} }
void NeuralNet::initXML(string& xml) { void NeuralNet::initXML(string& xml) {