Fixing more and more

This commit is contained in:
blacklight 2009-08-16 15:29:54 +02:00
parent 25996a5e70
commit 73f13abb56
2 changed files with 57 additions and 53 deletions

View file

@ -50,8 +50,7 @@ namespace neuralpp {
int epochs;
int ref_epochs;
double l_rate;
//double ex;
std::vector<double> ex;
std::vector<double> expect;
/**
* @brief It updates the weights of the net's synapsis through back-propagation.
@ -71,7 +70,7 @@ namespace neuralpp {
* @param ex Expected value
* @return Mean error
*/
double error(double ex) const;
double error (double ex);
/**
* @brief Private pointer to function, containing the function to

View file

@ -11,8 +11,10 @@
* this program. If not, see <http://www.gnu.org/licenses/>. *
**************************************************************************************************/
#include <iostream>
#include <fstream>
#include <sstream>
using namespace std;
#include "neural++.hpp"
@ -70,8 +72,14 @@ namespace neuralpp {
return v;
}
double NeuralNet::error(double expected) const {
return 0.5*(getOutput()-expected)*(getOutput()-expected);
double NeuralNet::error(double expected) {
double err = 0.0;
vector<double> out = getOutputs();
for (size_t i=0; i < output->size(); i++)
err += 0.5*(out[i] - expect[i]) * (out[i] - expect[i]);
return err;
}
void NeuralNet::propagate() {
@ -89,58 +97,71 @@ namespace neuralpp {
}
void NeuralNet::setExpected(double e) {
ex.clear();
ex.push_back(e);
expect.clear();
expect.push_back(e);
}
void NeuralNet::setExpected(vector<double> e) {
expect.clear();
expect.assign(e.begin(), e.end());
}
double NeuralNet::expected() const {
return ex[0];
return expect[0];
}
vector<double> NeuralNet::getExpected() const {
return expect;
}
void NeuralNet::updateWeights() {
double out_delta;
double Dk = 0.0;
size_t k = output->size();
for (size_t i = 0; i < output->size(); i++) {
for (size_t i = 0; i < k; i++) {
Neuron *n = &(*output)[i];
double out_delta = 0.0,
z = n->getActv(),
d = expect[i],
f = df(actv_f, n->getProp());
for (size_t j = 0; j < n->nIn(); j++) {
Synapsis *s = &(n->synIn(j));
double y = s->getIn()->getActv(),
beta = s->momentum(ref_epochs, ref_epochs - epochs);
if (ref_epochs - epochs > 0)
out_delta =
(-l_rate) * (getOutput() - expected()) *
df(actv_f, n->getProp()) * s->getIn()->getActv() +
s->momentum(ref_epochs, ref_epochs - epochs) *
s->getPrevDelta();
(-l_rate) * (z-d) * f * y +
beta * s->getPrevDelta();
else
out_delta =
(-l_rate) * (getOutput() - expected()) *
df(actv_f, n->getProp()) * s->getIn()->getActv();
(-l_rate) * (z-d) * f * y;
Dk += ( (z-d) * f * s->getWeight() );
s->setDelta(out_delta);
}
}
for (size_t i = 0; i < hidden->size(); i++) {
Neuron *n = &(*hidden)[i];
double d =
df(actv_f, n->getProp()) *
n->synOut(0).getWeight() * out_delta;
double hidden_delta = 0.0,
d = df(actv_f, n->getProp()) * Dk;
for (size_t j = 0; j < n->nIn(); j++) {
Synapsis *s = &(n->synIn(j));
double x = s->getIn()->getActv(),
beta = s->momentum(ref_epochs, ref_epochs - epochs);
if (ref_epochs - epochs > 0)
s->setDelta((-l_rate) * d *
s->getIn()->getActv() +
s->momentum(ref_epochs,
ref_epochs
-
epochs) *
s->getPrevDelta());
hidden_delta =
(-l_rate) * d * x +
beta * s->getPrevDelta();
else
s->setDelta((-l_rate) * d *
s->getIn()->getActv());
hidden_delta =
(-l_rate) * d * x;
s->setDelta(hidden_delta);
}
}
}
@ -153,7 +174,7 @@ namespace neuralpp {
Synapsis *s = &(n->synIn(j));
s->setWeight(s->getWeight() +
s->getDelta());
s->setDelta(0);
s->setDelta(0.0);
}
}
}
@ -180,7 +201,7 @@ namespace neuralpp {
record.epochs = ref_epochs;
record.l_rate = l_rate;
record.ex = ex[0];
record.ex = expect[0];
if (out.write((char*) &record, sizeof(struct netrecord)) <= 0)
throw NetworkFileWriteException();
@ -416,7 +437,6 @@ namespace neuralpp {
void NeuralNet::train(string xmlsrc, NeuralNet::source src =
file) throw(InvalidXMLException) {
double out;
CMarkup xml;
if (src == file)
@ -432,8 +452,7 @@ namespace neuralpp {
if (xml.FindElem("NETWORK")) {
while (xml.FindChildElem("TRAINING")) {
vector<double> input;
double output;
bool valid = false;
vector<double> output;
xml.IntoElem();
@ -445,36 +464,22 @@ namespace neuralpp {
xml.OutOfElem();
}
if (xml.FindChildElem("OUTPUT")) {
while (xml.FindChildElem("OUTPUT")) {
xml.IntoElem();
output =
atof(xml.GetData().c_str());
output.push_back( atof(xml.GetData().c_str()) );
xml.OutOfElem();
}
xml.OutOfElem();
while (!valid) {
stringstream ss(stringstream::in | stringstream::out);
setInput(input);
propagate();
setExpected(output);
update();
out = getOutput();
ss << out;
if (ss.str().find("inf") == string::npos)
valid = true;
}
}
}
return;
}
void NeuralNet::initXML(string& xml) {
xml.append
("<?xml version=\"1.0\" encoding=\"iso-8859-1\"?>\n"