forked from platypush/platypush
Removed stt.deepspeech
integration.
The project hasn't seen a commit in three years and it's probably been abandoned by Mozilla. New and better maintained speech-to-text integrations will be investigated.
This commit is contained in:
parent
b00623f655
commit
a026a101cd
8 changed files with 0 additions and 210 deletions
|
@ -10,7 +10,6 @@ Backends
|
|||
platypush/backend/midi.rst
|
||||
platypush/backend/nodered.rst
|
||||
platypush/backend/redis.rst
|
||||
platypush/backend/stt.deepspeech.rst
|
||||
platypush/backend/stt.picovoice.hotword.rst
|
||||
platypush/backend/stt.picovoice.speech.rst
|
||||
platypush/backend/tcp.rst
|
||||
|
|
|
@ -1,5 +0,0 @@
|
|||
``stt.deepspeech``
|
||||
====================================
|
||||
|
||||
.. automodule:: platypush.backend.stt.deepspeech
|
||||
:members:
|
|
@ -1,5 +0,0 @@
|
|||
``stt.deepspeech``
|
||||
====================================
|
||||
|
||||
.. automodule:: platypush.plugins.stt.deepspeech
|
||||
:members:
|
|
@ -119,7 +119,6 @@ Plugins
|
|||
platypush/plugins/smartthings.rst
|
||||
platypush/plugins/sound.rst
|
||||
platypush/plugins/ssh.rst
|
||||
platypush/plugins/stt.deepspeech.rst
|
||||
platypush/plugins/stt.picovoice.hotword.rst
|
||||
platypush/plugins/stt.picovoice.speech.rst
|
||||
platypush/plugins/sun.rst
|
||||
|
|
|
@ -1,21 +0,0 @@
|
|||
from platypush.backend.stt import SttBackend
|
||||
|
||||
|
||||
class SttDeepspeechBackend(SttBackend):
|
||||
"""
|
||||
Backend for the Mozilla Deepspeech speech-to-text engine plugin. Set this plugin to ``enabled`` if you
|
||||
want to run the speech-to-text engine continuously instead of programmatically using
|
||||
``start_detection`` and ``stop_detection``.
|
||||
|
||||
Requires:
|
||||
|
||||
- The :class:`platypush.plugins.stt.deepspeech.SttDeepspeechPlugin` plugin configured and its dependencies
|
||||
installed, as well as the language model files.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__('stt.deepspeech', *args, **kwargs)
|
||||
|
||||
|
||||
# vim:sw=4:ts=4:et:
|
|
@ -1,6 +0,0 @@
|
|||
manifest:
|
||||
events: {}
|
||||
install:
|
||||
pip: []
|
||||
package: platypush.backend.stt.deepspeech
|
||||
type: backend
|
|
@ -1,153 +0,0 @@
|
|||
import os
|
||||
from typing import Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import wave
|
||||
|
||||
from platypush.message.response.stt import SpeechDetectedResponse
|
||||
from platypush.plugins import action
|
||||
from platypush.plugins.stt import SttPlugin
|
||||
|
||||
|
||||
class SttDeepspeechPlugin(SttPlugin):
|
||||
"""
|
||||
This plugin performs speech-to-text and speech detection using the
|
||||
`Mozilla DeepSpeech <https://github.com/mozilla/DeepSpeech>`_ engine.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_file: str,
|
||||
lm_file: str,
|
||||
trie_file: str,
|
||||
lm_alpha: float = 0.75,
|
||||
lm_beta: float = 1.85,
|
||||
beam_width: int = 500,
|
||||
*args,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
In order to run the speech-to-text engine you'll need to download the right model files for the
|
||||
Deepspeech engine that you have installed:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
# Create the working folder for the models
|
||||
export MODELS_DIR=~/models
|
||||
mkdir -p $MODELS_DIR
|
||||
cd $MODELS_DIR
|
||||
|
||||
# Download and extract the model files for your version of Deepspeech. This may take a while.
|
||||
export DEEPSPEECH_VERSION=0.6.1
|
||||
wget \
|
||||
'https://github.com/mozilla/DeepSpeech/releases/download/v$DEEPSPEECH_VERSION/deepspeech-$DEEPSPEECH_VERSION-models.tar.gz'
|
||||
tar -xvzf deepspeech-$DEEPSPEECH_VERSION-models.tar.gz
|
||||
x deepspeech-0.6.1-models/
|
||||
x deepspeech-0.6.1-models/lm.binary
|
||||
x deepspeech-0.6.1-models/output_graph.pbmm
|
||||
x deepspeech-0.6.1-models/output_graph.pb
|
||||
x deepspeech-0.6.1-models/trie
|
||||
x deepspeech-0.6.1-models/output_graph.tflite
|
||||
|
||||
:param model_file: Path to the model file (usually named ``output_graph.pb`` or ``output_graph.pbmm``).
|
||||
Note that ``.pbmm`` usually perform better and are smaller.
|
||||
|
||||
:param lm_file: Path to the language model binary file (usually named ``lm.binary``).
|
||||
:param trie_file: The path to the trie file build from the same vocabulary as the language model binary
|
||||
(usually named ``trie``).
|
||||
:param lm_alpha: The alpha hyperparameter of the CTC decoder - Language Model weight.
|
||||
See <https://github.com/mozilla/DeepSpeech/releases/tag/v0.6.0>.
|
||||
:param lm_beta: The beta hyperparameter of the CTC decoder - Word Insertion weight.
|
||||
See <https://github.com/mozilla/DeepSpeech/releases/tag/v0.6.0>.
|
||||
:param beam_width: Decoder beam width (see beam scoring in KenLM language model).
|
||||
:param input_device: PortAudio device index or name that will be used for recording speech (default: default
|
||||
system audio input device).
|
||||
:param hotword: When this word is detected, the plugin will trigger a
|
||||
:class:`platypush.message.event.stt.HotwordDetectedEvent` instead of a
|
||||
:class:`platypush.message.event.stt.SpeechDetectedEvent` event. You can use these events for hooking other
|
||||
assistants.
|
||||
:param hotwords: Use a list of hotwords instead of a single one.
|
||||
:param conversation_timeout: If ``hotword`` or ``hotwords`` are set and ``conversation_timeout`` is set,
|
||||
the next speech detected event will trigger a :class:`platypush.message.event.stt.ConversationDetectedEvent`
|
||||
instead of a :class:`platypush.message.event.stt.SpeechDetectedEvent` event. You can hook custom hooks
|
||||
here to run any logic depending on the detected speech - it can emulate a kind of
|
||||
"OK, Google. Turn on the lights" interaction without using an external assistant.
|
||||
:param block_duration: Duration of the acquired audio blocks (default: 1 second).
|
||||
"""
|
||||
|
||||
import deepspeech
|
||||
|
||||
super().__init__(*args, **kwargs)
|
||||
self.model_file = os.path.abspath(os.path.expanduser(model_file))
|
||||
self.lm_file = os.path.abspath(os.path.expanduser(lm_file))
|
||||
self.trie_file = os.path.abspath(os.path.expanduser(trie_file))
|
||||
self.lm_alpha = lm_alpha
|
||||
self.lm_beta = lm_beta
|
||||
self.beam_width = beam_width
|
||||
self._model: Optional[deepspeech.Model] = None
|
||||
self._context = None
|
||||
|
||||
def _get_model(self):
|
||||
import deepspeech
|
||||
|
||||
if not self._model:
|
||||
self._model = deepspeech.Model(self.model_file, self.beam_width)
|
||||
self._model.enableDecoderWithLM(
|
||||
self.lm_file, self.trie_file, self.lm_alpha, self.lm_beta
|
||||
)
|
||||
|
||||
return self._model
|
||||
|
||||
def _get_context(self):
|
||||
if not self._model:
|
||||
self._model = self._get_model()
|
||||
if not self._context:
|
||||
self._context = self._model.createStream()
|
||||
|
||||
return self._context
|
||||
|
||||
@staticmethod
|
||||
def convert_frames(frames: Union[np.ndarray, bytes]) -> np.ndarray:
|
||||
return np.frombuffer(frames, dtype=np.int16)
|
||||
|
||||
def on_detection_started(self):
|
||||
self._context = self._get_context()
|
||||
|
||||
def on_detection_ended(self):
|
||||
if self._model and self._context:
|
||||
self._model.finishStream()
|
||||
self._context = None
|
||||
|
||||
def detect_speech(self, frames) -> str:
|
||||
model = self._get_model()
|
||||
context = self._get_context()
|
||||
model.feedAudioContent(context, frames)
|
||||
return model.intermediateDecode(context)
|
||||
|
||||
def on_speech_detected(self, speech: str) -> None:
|
||||
super().on_speech_detected(speech)
|
||||
if not speech:
|
||||
return
|
||||
|
||||
model = self._get_model()
|
||||
context = self._get_context()
|
||||
model.finishStream(context)
|
||||
self._context = None
|
||||
|
||||
@action
|
||||
def detect(self, audio_file: str) -> SpeechDetectedResponse:
|
||||
"""
|
||||
Perform speech-to-text analysis on an audio file.
|
||||
|
||||
:param audio_file: Path to the audio file.
|
||||
"""
|
||||
audio_file = os.path.abspath(os.path.expanduser(audio_file))
|
||||
wav = wave.open(audio_file, 'r')
|
||||
buffer = wav.readframes(wav.getnframes())
|
||||
data = self.convert_frames(buffer)
|
||||
model = self._get_model()
|
||||
speech = model.stt(data)
|
||||
return SpeechDetectedResponse(speech=speech)
|
||||
|
||||
|
||||
# vim:sw=4:ts=4:et:
|
|
@ -1,18 +0,0 @@
|
|||
manifest:
|
||||
events: {}
|
||||
install:
|
||||
apk:
|
||||
- py3-numpy
|
||||
pacman:
|
||||
- python-numpy
|
||||
- python-sounddevice
|
||||
apt:
|
||||
- python3-numpy
|
||||
dnf:
|
||||
- python-numpy
|
||||
pip:
|
||||
- deepspeech
|
||||
- numpy
|
||||
- sounddevice
|
||||
package: platypush.plugins.stt.deepspeech
|
||||
type: plugin
|
Loading…
Add table
Reference in a new issue