Implemented PicoVoice speech-to-text integration [closes #130]

This commit is contained in:
Fabio Manganiello 2020-03-07 20:21:32 +01:00
parent a5c08ed3e4
commit ce0f3227ec
10 changed files with 188 additions and 26 deletions

View file

@ -243,6 +243,7 @@ autodoc_mock_imports = ['googlesamples.assistant.grpc.audio_helpers',
'deepspeech',
'wave',
'pvporcupine ',
'pvcheetah',
]
sys.path.insert(0, os.path.abspath('../..'))

View file

@ -1,21 +0,0 @@
from platypush.backend.stt import SttBackend
class SttPicovoiceBackend(SttBackend):
"""
Backend for the PicoVoice speech-to-text engine plugin. Set this plugin to ``enabled`` if you
want to run the speech-to-text engine continuously instead of programmatically using
``start_detection`` and ``stop_detection``.
Requires:
- The :class:`platypush.plugins.stt.deepspeech.SttPicovoicePlugin` plugin configured and its dependencies
installed.
"""
def __init__(self, *args, **kwargs):
super().__init__('stt.picovoice', *args, **kwargs)
# vim:sw=4:ts=4:et:

View file

@ -0,0 +1,21 @@
from platypush.backend.stt import SttBackend
class SttPicovoiceHotwordBackend(SttBackend):
"""
Backend for the PicoVoice hotword detection plugin. Set this plugin to ``enabled`` if you
want to run the hotword engine continuously instead of programmatically using
``start_detection`` and ``stop_detection``.
Requires:
- The :class:`platypush.plugins.stt.deepspeech.SttPicovoiceHotwordPlugin` plugin configured and its dependencies
installed.
"""
def __init__(self, *args, **kwargs):
super().__init__('stt.picovoice.hotword', *args, **kwargs)
# vim:sw=4:ts=4:et:

View file

@ -0,0 +1,21 @@
from platypush.backend.stt import SttBackend
class SttPicovoiceSpeechBackend(SttBackend):
"""
Backend for the PicoVoice speech detection plugin. Set this plugin to ``enabled`` if you
want to run the speech engine continuously instead of programmatically using
``start_detection`` and ``stop_detection``.
Requires:
- The :class:`platypush.plugins.stt.deepspeech.SttPicovoiceSpeechPlugin` plugin configured and its dependencies
installed.
"""
def __init__(self, *args, **kwargs):
super().__init__('stt.picovoice.speech', *args, **kwargs)
# vim:sw=4:ts=4:et:

View file

@ -7,10 +7,10 @@ from platypush.plugins import action
from platypush.plugins.stt import SttPlugin
class SttPicovoicePlugin(SttPlugin):
class SttPicovoiceHotwordPlugin(SttPlugin):
"""
This plugin performs speech-to-text and speech detection using the
`PicoVoice <https://github.com/Picovoice>`_ speech-to-text integrations.
This plugin performs hotword detection using
`PicoVoice <https://github.com/Picovoice>`_.
Requires:

View file

@ -0,0 +1,135 @@
import inspect
import os
import platform
import struct
import threading
from typing import Optional
from platypush.message.event.stt import SpeechStartedEvent
from platypush.context import get_bus
from platypush.message.response.stt import SpeechDetectedResponse
from platypush.plugins import action
from platypush.plugins.stt import SttPlugin
class SttPicovoiceSpeechPlugin(SttPlugin):
"""
This plugin performs speech detection using `PicoVoice <https://github.com/Picovoice>`_.
Requires:
* **cheetah** (``pip install git+https://github.com/BlackLight/cheetah``)
"""
def __init__(self,
library_path: Optional[str] = None,
acoustic_model_path: Optional[str] = None,
language_model_path: Optional[str] = None,
license_path: Optional[str] = None,
end_of_speech_timeout: int = 1,
*args, **kwargs):
"""
:param library_path: Path to the Cheetah binary library for your OS
(default: ``CHEETAH_INSTALL_DIR/lib/OS/ARCH/libpv_cheetah.EXT``).
:param acoustic_model_path: Path to the acoustic speech model
(default: ``CHEETAH_INSTALL_DIR/lib/common/acoustic_model.pv``).
:param language_model_path: Path to the language model
(default: ``CHEETAH_INSTALL_DIR/lib/common/language_model.pv``).
:param license_path: Path to your PicoVoice license
(default: ``CHEETAH_INSTALL_DIR/resources/license/cheetah_eval_linux_public.lic``).
:param end_of_speech_timeout: Number of seconds of silence during speech recognition before considering
a phrase over (default: 1).
"""
from pvcheetah import Cheetah
super().__init__(*args, **kwargs)
self._basedir = os.path.abspath(os.path.join(inspect.getfile(Cheetah), '..', '..', '..'))
if not library_path:
library_path = self._get_library_path()
if not language_model_path:
language_model_path = os.path.join(self._basedir, 'lib', 'common', 'language_model.pv')
if not acoustic_model_path:
acoustic_model_path = os.path.join(self._basedir, 'lib', 'common', 'acoustic_model.pv')
if not license_path:
license_path = os.path.join(self._basedir, 'resources', 'license', 'cheetah_eval_linux_public.lic')
self._library_path = library_path
self._language_model_path = language_model_path
self._acoustic_model_path = acoustic_model_path
self._license_path = license_path
self._end_of_speech_timeout = end_of_speech_timeout
self._stt_engine: Optional[Cheetah] = None
self._speech_in_progress = threading.Event()
def _get_library_path(self) -> str:
path = os.path.join(self._basedir, 'lib', platform.system().lower(), platform.machine())
return os.path.join(path, [f for f in os.listdir(path) if f.startswith('libpv_cheetah.')][0])
def convert_frames(self, frames: bytes) -> tuple:
assert self._stt_engine, 'The speech engine is not running'
return struct.unpack_from("h" * self._stt_engine.frame_length, frames)
def on_detection_ended(self) -> None:
if self._stt_engine:
self._stt_engine.delete()
self._stt_engine = None
def detect_speech(self, frames: tuple) -> str:
text, is_endpoint = self._stt_engine.process(frames)
text = text.strip()
if text:
if not self._speech_in_progress.is_set():
self._speech_in_progress.set()
get_bus().post(SpeechStartedEvent())
self._current_text += ' ' + text.strip()
if is_endpoint:
text = self._stt_engine.flush().strip().strip()
if text:
self._current_text += ' ' + text
self._speech_in_progress.clear()
if self._current_text:
self.on_speech_detected(self._current_text)
self._current_text = ''
return self._current_text
def process_text(self, text: str) -> None:
pass
@action
def detect(self, audio_file: str) -> SpeechDetectedResponse:
"""
Perform speech-to-text analysis on an audio file.
:param audio_file: Path to the audio file.
"""
pass
def recording_thread(self, input_device: Optional[str] = None, *args, **kwargs) -> None:
assert self._stt_engine, 'The hotword engine has not yet been initialized'
super().recording_thread(block_size=self._stt_engine.frame_length, input_device=input_device)
@action
def start_detection(self, *args, **kwargs) -> None:
from pvcheetah import Cheetah
self._stt_engine = Cheetah(
library_path=self._library_path,
acoustic_model_path=self._acoustic_model_path,
language_model_path=self._language_model_path,
license_path=self._license_path,
endpoint_duration_sec=self._end_of_speech_timeout,
)
self.rate = self._stt_engine.sample_rate
self._speech_in_progress.clear()
super().start_detection(*args, **kwargs)
# vim:sw=4:ts=4:et:

View file

@ -235,5 +235,8 @@ croniter
# numpy
# sounddevice
# Support for PicoVoice speech-to-text engine
# Support for PicoVoice hotword engine
# pvporcupine
# Support for PicoVoice speech-to-text engine
# pvcheetah

View file

@ -285,7 +285,9 @@ setup(
'zwave': ['python-openzwave'],
# Support for Mozilla DeepSpeech speech-to-text engine
'deepspeech': ['deepspeech', 'numpy','sounddevice'],
# Support for PicoVoice hotword detection engine
'picovoice-hotword': ['pvporcupine'],
# Support for PicoVoice speech-to-text engine
'picovoice': ['pvporcupine'],
'picovoice-speech': ['pvcheetah @ git+https://github.com/BlackLight/cheetah'],
},
)