[#304] Removed old Picovoice integrations

This commit is contained in:
Fabio Manganiello 2024-04-06 00:11:46 +02:00
parent dba0acb82e
commit f0382c73ab
Signed by untrusted user: blacklight
GPG key ID: D90FBA7F76362774
12 changed files with 0 additions and 718 deletions

View file

@ -1,40 +0,0 @@
import time
from platypush.backend import Backend
from platypush.context import get_plugin
from platypush.plugins.stt import SttPlugin
class SttBackend(Backend):
"""
Base class for speech-to-text backends.
"""
def __init__(self, plugin_name: str, retry_sleep: float = 5.0, *args, **kwargs):
"""
:param plugin_name: Plugin name of the class that will be used for speech detection. Must be an instance of
:class:`platypush.plugins.stt.SttPlugin`.
:param retry_sleep: Number of seconds the backend will wait on failure before re-initializing the plugin
(default: 5 seconds).
"""
super().__init__(*args, **kwargs)
self.plugin_name = plugin_name
self.retry_sleep = retry_sleep
def run(self):
super().run()
self.logger.info('Starting {} speech-to-text backend'.format(self.__class__.__name__))
while not self.should_stop():
try:
plugin: SttPlugin = get_plugin(self.plugin_name)
with plugin:
# noinspection PyProtectedMember
plugin._detection_thread.join()
except Exception as e:
self.logger.exception(e)
self.logger.warning('Encountered an unexpected error, retrying in {} seconds'.format(self.retry_sleep))
time.sleep(self.retry_sleep)
# vim:sw=4:ts=4:et:

View file

@ -1,21 +0,0 @@
from platypush.backend.stt import SttBackend
class SttPicovoiceHotwordBackend(SttBackend):
"""
Backend for the PicoVoice hotword detection plugin. Set this plugin to ``enabled`` if you
want to run the hotword engine continuously instead of programmatically using
``start_detection`` and ``stop_detection``.
Requires:
- The :class:`platypush.plugins.stt.deepspeech.SttPicovoiceHotwordPlugin` plugin configured and its dependencies
installed.
"""
def __init__(self, *args, **kwargs):
super().__init__('stt.picovoice.hotword', *args, **kwargs)
# vim:sw=4:ts=4:et:

View file

@ -1,6 +0,0 @@
manifest:
events: {}
install:
pip: []
package: platypush.backend.stt.picovoice.hotword
type: backend

View file

@ -1,21 +0,0 @@
from platypush.backend.stt import SttBackend
class SttPicovoiceSpeechBackend(SttBackend):
"""
Backend for the PicoVoice speech detection plugin. Set this plugin to ``enabled`` if you
want to run the speech engine continuously instead of programmatically using
``start_detection`` and ``stop_detection``.
Requires:
- The :class:`platypush.plugins.stt.deepspeech.SttPicovoiceSpeechPlugin` plugin configured and its dependencies
installed.
"""
def __init__(self, *args, **kwargs):
super().__init__('stt.picovoice.speech', *args, **kwargs)
# vim:sw=4:ts=4:et:

View file

@ -1,6 +0,0 @@
manifest:
events: {}
install:
pip: []
package: platypush.backend.stt.picovoice.speech
type: backend

View file

@ -1,336 +0,0 @@
import queue
import threading
from abc import ABC, abstractmethod
from typing import Optional, Union, List
import sounddevice as sd
from platypush.context import get_bus
from platypush.message.event.stt import (
SpeechDetectionStartedEvent,
SpeechDetectionStoppedEvent,
SpeechStartedEvent,
SpeechDetectedEvent,
HotwordDetectedEvent,
ConversationDetectedEvent,
)
from platypush.message.response.stt import SpeechDetectedResponse
from platypush.plugins import Plugin, action
class SttPlugin(ABC, Plugin):
"""
Abstract class for speech-to-text plugins.
"""
_thread_stop_timeout = 10.0
rate = 16000
channels = 1
def __init__(
self,
input_device: Optional[Union[int, str]] = None,
hotword: Optional[str] = None,
hotwords: Optional[List[str]] = None,
conversation_timeout: Optional[float] = 10.0,
block_duration: float = 1.0,
):
"""
:param input_device: PortAudio device index or name that will be used for recording speech (default: default
system audio input device).
:param hotword: When this word is detected, the plugin will trigger a
:class:`platypush.message.event.stt.HotwordDetectedEvent` instead of a
:class:`platypush.message.event.stt.SpeechDetectedEvent` event. You can use these events for hooking other
assistants.
:param hotwords: Use a list of hotwords instead of a single one.
:param conversation_timeout: If ``hotword`` or ``hotwords`` are set and ``conversation_timeout`` is set,
the next speech detected event will trigger a :class:`platypush.message.event.stt.ConversationDetectedEvent`
instead of a :class:`platypush.message.event.stt.SpeechDetectedEvent` event. You can hook custom hooks
here to run any logic depending on the detected speech - it can emulate a kind of
"OK, Google. Turn on the lights" interaction without using an external assistant (default: 10 seconds).
:param block_duration: Duration of the acquired audio blocks (default: 1 second).
"""
super().__init__()
self.input_device = input_device
self.conversation_timeout = conversation_timeout
self.block_duration = block_duration
self.hotwords = set(hotwords or [])
if hotword:
self.hotwords = {hotword}
self._conversation_event = threading.Event()
self._input_stream: Optional[sd.InputStream] = None
self._recording_thread: Optional[threading.Thread] = None
self._detection_thread: Optional[threading.Thread] = None
self._audio_queue: Optional[queue.Queue] = None
self._current_text = ''
def _get_input_device(self, device: Optional[Union[int, str]] = None) -> int:
"""
Get the index of the input device by index or name.
:param device: Device index or name. If None is set then the function will return the index of the
default audio input device.
:return: Index of the audio input device.
"""
if not device:
device = self.input_device
if not device:
return sd.query_hostapis()[0].get('default_input_device')
if isinstance(device, int):
assert device <= len(sd.query_devices())
return device
for i, dev in enumerate(sd.query_devices()):
if dev['name'] == device:
return i
raise AssertionError('Device {} not found'.format(device))
def on_speech_detected(self, speech: str) -> None:
"""
Hook called when speech is detected. Triggers the right event depending on the current context.
:param speech: Detected speech.
"""
speech = speech.strip()
if speech in self.hotwords:
event = HotwordDetectedEvent(hotword=speech)
if self.conversation_timeout:
self._conversation_event.set()
threading.Timer(
self.conversation_timeout, lambda: self._conversation_event.clear()
).start()
elif self._conversation_event.is_set():
event = ConversationDetectedEvent(speech=speech)
else:
event = SpeechDetectedEvent(speech=speech)
get_bus().post(event)
@staticmethod
def convert_frames(frames: bytes) -> bytes:
"""
Conversion method for raw audio frames. It just returns the input frames as bytes. Override it if required
by your logic.
:param frames: Input audio frames, as bytes.
:return: The audio frames as passed on the input. Override if required.
"""
return frames
def on_detection_started(self) -> None:
"""
Method called when the ``detection_thread`` starts. Initialize your context variables and models here if
required.
"""
pass
def on_detection_ended(self) -> None:
"""
Method called when the ``detection_thread`` stops. Clean up your context variables and models here.
"""
pass
def before_recording(self) -> None:
"""
Method called when the ``recording_thread`` starts. Put here any logic that you may want to run before the
recording thread starts.
"""
pass
def on_recording_started(self) -> None:
"""
Method called after the ``recording_thread`` opens the audio device. Put here any logic that you may want to
run after the recording starts.
"""
pass
def on_recording_ended(self) -> None:
"""
Method called when the ``recording_thread`` stops. Put here any logic that you want to run after the audio
device is closed.
"""
pass
@abstractmethod
def detect_speech(self, frames) -> str:
"""
Method called within the ``detection_thread`` when new audio frames have been captured. Must be implemented
by the derived classes.
:param frames: Audio frames, as returned by ``convert_frames``.
:return: Detected text, as a string. Returns an empty string if no text has been detected.
"""
raise NotImplementedError
def process_text(self, text: str) -> None:
if (not text and self._current_text) or (text and text == self._current_text):
self.on_speech_detected(self._current_text)
self._current_text = ''
else:
if text:
if not self._current_text:
get_bus().post(SpeechStartedEvent())
self.logger.info('Intermediate speech results: [{}]'.format(text))
self._current_text = text
def detection_thread(self) -> None:
"""
This thread reads frames from ``_audio_queue``, performs the speech-to-text detection and calls
"""
self._current_text = ''
self.logger.debug('Detection thread started')
self.on_detection_started()
while self._audio_queue:
try:
frames = self._audio_queue.get()
frames = self.convert_frames(frames)
except Exception as e:
self.logger.warning(
'Error while feeding audio to the model: {}'.format(str(e))
)
continue
text = self.detect_speech(frames).strip()
self.process_text(text)
self.on_detection_ended()
self.logger.debug('Detection thread terminated')
def recording_thread(
self,
block_duration: Optional[float] = None,
block_size: Optional[int] = None,
input_device: Optional[str] = None,
) -> None:
"""
Recording thread. It reads raw frames from the audio device and dispatches them to ``detection_thread``.
:param block_duration: Audio blocks duration. Specify either ``block_duration`` or ``block_size``.
:param block_size: Size of the audio blocks. Specify either ``block_duration`` or ``block_size``.
:param input_device: Input device
"""
assert (block_duration or block_size) and not (
block_duration and block_size
), 'Please specify either block_duration or block_size'
if not block_size:
block_size = int(self.rate * self.channels * block_duration)
self.before_recording()
self.logger.debug('Recording thread started')
device = self._get_input_device(input_device)
self._input_stream = sd.InputStream(
samplerate=self.rate,
device=device,
channels=self.channels,
dtype='int16',
latency=0,
blocksize=block_size,
)
self._input_stream.start()
self.on_recording_started()
get_bus().post(SpeechDetectionStartedEvent())
while self._input_stream:
try:
frames = self._input_stream.read(block_size)[0]
except Exception as e:
self.logger.warning(
'Error while reading from the audio input: {}'.format(str(e))
)
continue
self._audio_queue.put(frames)
get_bus().post(SpeechDetectionStoppedEvent())
self.on_recording_ended()
self.logger.debug('Recording thread terminated')
@abstractmethod
@action
def detect(self, audio_file: str) -> SpeechDetectedResponse:
"""
Perform speech-to-text analysis on an audio file. Must be implemented by the derived classes.
:param audio_file: Path to the audio file.
"""
raise NotImplementedError
def __enter__(self):
"""
Context manager enter. Starts detection and returns self.
"""
self.start_detection()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""
Context manager exit. Stops detection.
"""
self.stop_detection()
@action
def start_detection(
self,
input_device: Optional[str] = None,
seconds: Optional[float] = None,
block_duration: Optional[float] = None,
) -> None:
"""
Start the speech detection engine.
:param input_device: Audio input device name/index override
:param seconds: If set, then the detection engine will stop after this many seconds, otherwise it'll
start running until ``stop_detection`` is called or application stop.
:param block_duration: ``block_duration`` override.
"""
assert (
not self._input_stream and not self._recording_thread
), 'Speech detection is already running'
block_duration = block_duration or self.block_duration
input_device = input_device if input_device is not None else self.input_device
self._audio_queue = queue.Queue()
self._recording_thread = threading.Thread(
target=lambda: self.recording_thread(
block_duration=block_duration, input_device=input_device
)
)
self._recording_thread.start()
self._detection_thread = threading.Thread(
target=lambda: self.detection_thread()
)
self._detection_thread.start()
if seconds:
threading.Timer(seconds, lambda: self.stop_detection()).start()
@action
def stop_detection(self) -> None:
"""
Stop the speech detection engine.
"""
assert self._input_stream, 'Speech detection is not running'
self._input_stream.stop(ignore_errors=True)
self._input_stream.close(ignore_errors=True)
self._input_stream = None
if self._recording_thread:
self._recording_thread.join(timeout=self._thread_stop_timeout)
self._recording_thread = None
self._audio_queue = None
if self._detection_thread:
self._detection_thread.join(timeout=self._thread_stop_timeout)
self._detection_thread = None
# vim:sw=4:ts=4:et:

View file

@ -1,120 +0,0 @@
import os
import struct
from typing import Optional, List
from platypush.message.response.stt import SpeechDetectedResponse
from platypush.plugins import action
from platypush.plugins.stt import SttPlugin
class SttPicovoiceHotwordPlugin(SttPlugin):
"""
This plugin performs hotword detection using `PicoVoice <https://github.com/Picovoice>`_.
"""
def __init__(
self,
library_path: Optional[str] = None,
model_file_path: Optional[str] = None,
keyword_file_paths: Optional[List[str]] = None,
sensitivity: float = 0.5,
sensitivities: Optional[List[float]] = None,
*args,
**kwargs
):
from pvporcupine import Porcupine
from pvporcupine.resources.util.python.util import (
LIBRARY_PATH,
MODEL_FILE_PATH,
KEYWORD_FILE_PATHS,
)
super().__init__(*args, **kwargs)
self.hotwords = list(self.hotwords)
self._hotword_engine: Optional[Porcupine] = None
self._library_path = os.path.abspath(
os.path.expanduser(library_path or LIBRARY_PATH)
)
self._model_file_path = os.path.abspath(
os.path.expanduser(model_file_path or MODEL_FILE_PATH)
)
if not keyword_file_paths:
hotwords = KEYWORD_FILE_PATHS
assert all(
hotword in hotwords for hotword in self.hotwords
), 'Not all the hotwords could be found. Available hotwords: {}'.format(
list(hotwords.keys())
)
self._keyword_file_paths = [
os.path.abspath(os.path.expanduser(hotwords[hotword]))
for hotword in self.hotwords
]
else:
self._keyword_file_paths = [
os.path.abspath(os.path.expanduser(p)) for p in keyword_file_paths
]
self._sensitivities = []
if sensitivities:
assert len(self._keyword_file_paths) == len(
sensitivities
), 'Please specify as many sensitivities as the number of configured hotwords'
self._sensitivities = sensitivities
else:
self._sensitivities = [sensitivity] * len(self._keyword_file_paths)
def convert_frames(self, frames: bytes) -> tuple:
assert self._hotword_engine, 'The hotword engine is not running'
return struct.unpack_from("h" * self._hotword_engine.frame_length, frames)
def on_detection_ended(self) -> None:
if self._hotword_engine:
self._hotword_engine.delete()
self._hotword_engine = None
def detect_speech(self, frames: tuple) -> str:
index = self._hotword_engine.process(frames)
if index < 0:
return ''
if index is True:
index = 0
return self.hotwords[index]
@action
def detect(self, audio_file: str) -> SpeechDetectedResponse:
"""
Perform speech-to-text analysis on an audio file.
:param audio_file: Path to the audio file.
"""
pass
def recording_thread(
self, input_device: Optional[str] = None, *args, **kwargs
) -> None:
assert self._hotword_engine, 'The hotword engine has not yet been initialized'
super().recording_thread(
block_size=self._hotword_engine.frame_length, input_device=input_device
)
@action
def start_detection(self, *args, **kwargs) -> None:
from pvporcupine import Porcupine
self._hotword_engine = Porcupine(
library_path=self._library_path,
model_file_path=self._model_file_path,
keyword_file_paths=self._keyword_file_paths,
sensitivities=self._sensitivities,
)
self.rate = self._hotword_engine.sample_rate
super().start_detection(*args, **kwargs)
# vim:sw=4:ts=4:et:

View file

@ -1,7 +0,0 @@
manifest:
events: {}
install:
pip:
- pvporcupine
package: platypush.plugins.stt.picovoice.hotword
type: plugin

View file

@ -1,154 +0,0 @@
import inspect
import os
import platform
import struct
import threading
from typing import Optional
from platypush.message.event.stt import SpeechStartedEvent
from platypush.context import get_bus
from platypush.message.response.stt import SpeechDetectedResponse
from platypush.plugins import action
from platypush.plugins.stt import SttPlugin
class SttPicovoiceSpeechPlugin(SttPlugin):
"""
This plugin performs speech detection using `PicoVoice <https://github.com/Picovoice>`_.
NOTE: The PicoVoice product used for real-time speech-to-text (Cheetah) can be used freely for
personal applications on x86_64 Linux. Other architectures and operating systems require a commercial license.
You can ask for a license `here <https://picovoice.ai/contact.html>`_.
"""
def __init__(
self,
library_path: Optional[str] = None,
acoustic_model_path: Optional[str] = None,
language_model_path: Optional[str] = None,
license_path: Optional[str] = None,
end_of_speech_timeout: int = 1,
*args,
**kwargs
):
"""
:param library_path: Path to the Cheetah binary library for your OS
(default: ``CHEETAH_INSTALL_DIR/lib/OS/ARCH/libpv_cheetah.EXT``).
:param acoustic_model_path: Path to the acoustic speech model
(default: ``CHEETAH_INSTALL_DIR/lib/common/acoustic_model.pv``).
:param language_model_path: Path to the language model
(default: ``CHEETAH_INSTALL_DIR/lib/common/language_model.pv``).
:param license_path: Path to your PicoVoice license
(default: ``CHEETAH_INSTALL_DIR/resources/license/cheetah_eval_linux_public.lic``).
:param end_of_speech_timeout: Number of seconds of silence during speech recognition before considering
a phrase over (default: 1).
"""
from pvcheetah import Cheetah
super().__init__(*args, **kwargs)
self._basedir = os.path.abspath(
os.path.join(inspect.getfile(Cheetah), '..', '..', '..')
)
if not library_path:
library_path = self._get_library_path()
if not language_model_path:
language_model_path = os.path.join(
self._basedir, 'lib', 'common', 'language_model.pv'
)
if not acoustic_model_path:
acoustic_model_path = os.path.join(
self._basedir, 'lib', 'common', 'acoustic_model.pv'
)
if not license_path:
license_path = os.path.join(
self._basedir, 'resources', 'license', 'cheetah_eval_linux_public.lic'
)
self._library_path = library_path
self._language_model_path = language_model_path
self._acoustic_model_path = acoustic_model_path
self._license_path = license_path
self._end_of_speech_timeout = end_of_speech_timeout
self._stt_engine: Optional[Cheetah] = None
self._speech_in_progress = threading.Event()
def _get_library_path(self) -> str:
path = os.path.join(
self._basedir, 'lib', platform.system().lower(), platform.machine()
)
return os.path.join(
path, [f for f in os.listdir(path) if f.startswith('libpv_cheetah.')][0]
)
def convert_frames(self, frames: bytes) -> tuple:
assert self._stt_engine, 'The speech engine is not running'
return struct.unpack_from("h" * self._stt_engine.frame_length, frames)
def on_detection_ended(self) -> None:
if self._stt_engine:
self._stt_engine.delete()
self._stt_engine = None
def detect_speech(self, frames: tuple) -> str:
text, is_endpoint = self._stt_engine.process(frames)
text = text.strip()
if text:
if not self._speech_in_progress.is_set():
self._speech_in_progress.set()
get_bus().post(SpeechStartedEvent())
self._current_text += ' ' + text.strip()
if is_endpoint:
text = self._stt_engine.flush().strip().strip()
if text:
self._current_text += ' ' + text
self._speech_in_progress.clear()
if self._current_text:
self.on_speech_detected(self._current_text)
self._current_text = ''
return self._current_text
def process_text(self, text: str) -> None:
pass
@action
def detect(self, audio_file: str) -> SpeechDetectedResponse:
"""
Perform speech-to-text analysis on an audio file.
:param audio_file: Path to the audio file.
"""
pass
def recording_thread(
self, input_device: Optional[str] = None, *args, **kwargs
) -> None:
assert self._stt_engine, 'The hotword engine has not yet been initialized'
super().recording_thread(
block_size=self._stt_engine.frame_length, input_device=input_device
)
@action
def start_detection(self, *args, **kwargs) -> None:
from pvcheetah import Cheetah
self._stt_engine = Cheetah(
library_path=self._library_path,
acoustic_model_path=self._acoustic_model_path,
language_model_path=self._language_model_path,
license_path=self._license_path,
endpoint_duration_sec=self._end_of_speech_timeout,
)
self.rate = self._stt_engine.sample_rate
self._speech_in_progress.clear()
super().start_detection(*args, **kwargs)
# vim:sw=4:ts=4:et:

View file

@ -1,7 +0,0 @@
manifest:
events: {}
install:
pip:
- cheetah
package: platypush.plugins.stt.picovoice.speech
type: plugin