forked from platypush/platypush
152 lines
6.2 KiB
Python
152 lines
6.2 KiB
Python
import os
|
|
from typing import Optional, Union
|
|
|
|
import numpy as np
|
|
import wave
|
|
|
|
from platypush.message.response.stt import SpeechDetectedResponse
|
|
from platypush.plugins import action
|
|
from platypush.plugins.stt import SttPlugin
|
|
|
|
|
|
class SttDeepspeechPlugin(SttPlugin):
|
|
"""
|
|
This plugin performs speech-to-text and speech detection using the
|
|
`Mozilla DeepSpeech <https://github.com/mozilla/DeepSpeech>`_ engine.
|
|
|
|
Requires:
|
|
|
|
* **deepspeech** (``pip install 'deepspeech>=0.6.0'``)
|
|
* **numpy** (``pip install numpy``)
|
|
* **sounddevice** (``pip install sounddevice``)
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
model_file: str,
|
|
lm_file: str,
|
|
trie_file: str,
|
|
lm_alpha: float = 0.75,
|
|
lm_beta: float = 1.85,
|
|
beam_width: int = 500,
|
|
*args, **kwargs):
|
|
"""
|
|
In order to run the speech-to-text engine you'll need to download the right model files for the
|
|
Deepspeech engine that you have installed:
|
|
|
|
.. code-block:: shell
|
|
|
|
# Create the working folder for the models
|
|
export MODELS_DIR=~/models
|
|
mkdir -p $MODELS_DIR
|
|
cd $MODELS_DIR
|
|
|
|
# Download and extract the model files for your version of Deepspeech. This may take a while.
|
|
export DEEPSPEECH_VERSION=0.6.1
|
|
wget https://github.com/mozilla/DeepSpeech/releases/download/v$DEEPSPEECH_VERSION/deepspeech-$DEEPSPEECH_VERSION-models.tar.gz
|
|
tar -xvzf deepspeech-$DEEPSPEECH_VERSION-models.tar.gz
|
|
x deepspeech-0.6.1-models/
|
|
x deepspeech-0.6.1-models/lm.binary
|
|
x deepspeech-0.6.1-models/output_graph.pbmm
|
|
x deepspeech-0.6.1-models/output_graph.pb
|
|
x deepspeech-0.6.1-models/trie
|
|
x deepspeech-0.6.1-models/output_graph.tflite
|
|
|
|
:param model_file: Path to the model file (usually named ``output_graph.pb`` or ``output_graph.pbmm``).
|
|
Note that ``.pbmm`` usually perform better and are smaller.
|
|
|
|
:param lm_file: Path to the language model binary file (usually named ``lm.binary``).
|
|
:param trie_file: The path to the trie file build from the same vocabulary as the language model binary
|
|
(usually named ``trie``).
|
|
:param lm_alpha: The alpha hyperparameter of the CTC decoder - Language Model weight.
|
|
See <https://github.com/mozilla/DeepSpeech/releases/tag/v0.6.0>.
|
|
:param lm_beta: The beta hyperparameter of the CTC decoder - Word Insertion weight.
|
|
See <https://github.com/mozilla/DeepSpeech/releases/tag/v0.6.0>.
|
|
:param beam_width: Decoder beam width (see beam scoring in KenLM language model).
|
|
:param input_device: PortAudio device index or name that will be used for recording speech (default: default
|
|
system audio input device).
|
|
:param hotword: When this word is detected, the plugin will trigger a
|
|
:class:`platypush.message.event.stt.HotwordDetectedEvent` instead of a
|
|
:class:`platypush.message.event.stt.SpeechDetectedEvent` event. You can use these events for hooking other
|
|
assistants.
|
|
:param hotwords: Use a list of hotwords instead of a single one.
|
|
:param conversation_timeout: If ``hotword`` or ``hotwords`` are set and ``conversation_timeout`` is set,
|
|
the next speech detected event will trigger a :class:`platypush.message.event.stt.ConversationDetectedEvent`
|
|
instead of a :class:`platypush.message.event.stt.SpeechDetectedEvent` event. You can hook custom hooks
|
|
here to run any logic depending on the detected speech - it can emulate a kind of
|
|
"OK, Google. Turn on the lights" interaction without using an external assistant.
|
|
:param block_duration: Duration of the acquired audio blocks (default: 1 second).
|
|
"""
|
|
|
|
import deepspeech
|
|
super().__init__(*args, **kwargs)
|
|
self.model_file = os.path.abspath(os.path.expanduser(model_file))
|
|
self.lm_file = os.path.abspath(os.path.expanduser(lm_file))
|
|
self.trie_file = os.path.abspath(os.path.expanduser(trie_file))
|
|
self.lm_alpha = lm_alpha
|
|
self.lm_beta = lm_beta
|
|
self.beam_width = beam_width
|
|
self._model: Optional[deepspeech.Model] = None
|
|
self._context = None
|
|
|
|
def _get_model(self):
|
|
import deepspeech
|
|
if not self._model:
|
|
self._model = deepspeech.Model(self.model_file, self.beam_width)
|
|
self._model.enableDecoderWithLM(self.lm_file, self.trie_file, self.lm_alpha, self.lm_beta)
|
|
|
|
return self._model
|
|
|
|
def _get_context(self):
|
|
if not self._model:
|
|
self._model = self._get_model()
|
|
if not self._context:
|
|
self._context = self._model.createStream()
|
|
|
|
return self._context
|
|
|
|
@staticmethod
|
|
def convert_frames(frames: Union[np.ndarray, bytes]) -> np.ndarray:
|
|
return np.frombuffer(frames, dtype=np.int16)
|
|
|
|
def on_detection_started(self):
|
|
self._context = self._get_context()
|
|
|
|
def on_detection_ended(self):
|
|
if self._model and self._context:
|
|
self._model.finishStream()
|
|
self._context = None
|
|
|
|
def detect_speech(self, frames) -> str:
|
|
model = self._get_model()
|
|
context = self._get_context()
|
|
model.feedAudioContent(context, frames)
|
|
return model.intermediateDecode(context)
|
|
|
|
def on_speech_detected(self, speech: str) -> None:
|
|
super().on_speech_detected(speech)
|
|
if not speech:
|
|
return
|
|
|
|
model = self._get_model()
|
|
context = self._get_context()
|
|
model.finishStream(context)
|
|
self._context = None
|
|
|
|
@action
|
|
def detect(self, audio_file: str) -> SpeechDetectedResponse:
|
|
"""
|
|
Perform speech-to-text analysis on an audio file.
|
|
|
|
:param audio_file: Path to the audio file.
|
|
"""
|
|
audio_file = os.path.abspath(os.path.expanduser(audio_file))
|
|
wav = wave.open(audio_file, 'r')
|
|
buffer = wav.readframes(wav.getnframes())
|
|
data = self.convert_frames(buffer)
|
|
model = self._get_model()
|
|
speech = model.stt(data)
|
|
return SpeechDetectedResponse(speech=speech)
|
|
|
|
|
|
# vim:sw=4:ts=4:et:
|