Keeping bayesian correlation in bayesian.c

This commit is contained in:
BlackLight 2010-09-28 21:36:58 +02:00
parent d7e0b426f4
commit dd3ea5940d
5 changed files with 16 additions and 140 deletions

View file

@ -18,6 +18,7 @@ include/sfPolicyUserData.c
libsf_ai_preproc_la_SOURCES = \ libsf_ai_preproc_la_SOURCES = \
alert_history.c \ alert_history.c \
alert_parser.c \ alert_parser.c \
bayesian.c \
cluster.c \ cluster.c \
correlation.c \ correlation.c \
db.c \ db.c \

View file

@ -77,7 +77,7 @@ LTLIBRARIES = $(lib_LTLIBRARIES)
libsf_ai_preproc_la_LIBADD = libsf_ai_preproc_la_LIBADD =
am_libsf_ai_preproc_la_OBJECTS = libsf_ai_preproc_la-alert_history.lo \ am_libsf_ai_preproc_la_OBJECTS = libsf_ai_preproc_la-alert_history.lo \
libsf_ai_preproc_la-alert_parser.lo \ libsf_ai_preproc_la-alert_parser.lo \
libsf_ai_preproc_la-cluster.lo \ libsf_ai_preproc_la-bayesian.lo libsf_ai_preproc_la-cluster.lo \
libsf_ai_preproc_la-correlation.lo libsf_ai_preproc_la-db.lo \ libsf_ai_preproc_la-correlation.lo libsf_ai_preproc_la-db.lo \
libsf_ai_preproc_la-mysql.lo libsf_ai_preproc_la-postgresql.lo \ libsf_ai_preproc_la-mysql.lo libsf_ai_preproc_la-postgresql.lo \
libsf_ai_preproc_la-regex.lo libsf_ai_preproc_la-spp_ai.lo \ libsf_ai_preproc_la-regex.lo libsf_ai_preproc_la-spp_ai.lo \
@ -253,6 +253,7 @@ include/sfPolicyUserData.c
libsf_ai_preproc_la_SOURCES = \ libsf_ai_preproc_la_SOURCES = \
alert_history.c \ alert_history.c \
alert_parser.c \ alert_parser.c \
bayesian.c \
cluster.c \ cluster.c \
correlation.c \ correlation.c \
db.c \ db.c \
@ -379,6 +380,9 @@ libsf_ai_preproc_la-alert_history.lo: alert_history.c
libsf_ai_preproc_la-alert_parser.lo: alert_parser.c libsf_ai_preproc_la-alert_parser.lo: alert_parser.c
$(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libsf_ai_preproc_la_CFLAGS) $(CFLAGS) -c -o libsf_ai_preproc_la-alert_parser.lo `test -f 'alert_parser.c' || echo '$(srcdir)/'`alert_parser.c $(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libsf_ai_preproc_la_CFLAGS) $(CFLAGS) -c -o libsf_ai_preproc_la-alert_parser.lo `test -f 'alert_parser.c' || echo '$(srcdir)/'`alert_parser.c
libsf_ai_preproc_la-bayesian.lo: bayesian.c
$(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libsf_ai_preproc_la_CFLAGS) $(CFLAGS) -c -o libsf_ai_preproc_la-bayesian.lo `test -f 'bayesian.c' || echo '$(srcdir)/'`bayesian.c
libsf_ai_preproc_la-cluster.lo: cluster.c libsf_ai_preproc_la-cluster.lo: cluster.c
$(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libsf_ai_preproc_la_CFLAGS) $(CFLAGS) -c -o libsf_ai_preproc_la-cluster.lo `test -f 'cluster.c' || echo '$(srcdir)/'`cluster.c $(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libsf_ai_preproc_la_CFLAGS) $(CFLAGS) -c -o libsf_ai_preproc_la-cluster.lo `test -f 'cluster.c' || echo '$(srcdir)/'`cluster.c

8
TODO
View file

@ -2,6 +2,12 @@
AVERAGE/HIGH PRIORITY: AVERAGE/HIGH PRIORITY:
====================== ======================
- Clustering alerts with time constraints
- Web interface
- Code profiling
- Saving packet flows as .pcap
- Neural network for computing k
- Isolating independant subgraphs from hyperalert correlation graphs
- Testing more scenarios, making more hyperalert models - Testing more scenarios, making more hyperalert models
============= =============
@ -9,6 +15,7 @@ LOW PRIORITY:
============= =============
- Managing clusters for addresses, timestamps (and more?) - Managing clusters for addresses, timestamps (and more?)
- Splitting the distinct subgraphs of the output graph
- libgc support - libgc support
===== =====
@ -22,4 +29,5 @@ DONE:
+ Dynamic cluster_min_size algorithm + Dynamic cluster_min_size algorithm
+ Add alerts' history serialization to db.c as well + Add alerts' history serialization to db.c as well
+ Bayesian learning among alerts in alert log + Bayesian learning among alerts in alert log
+ Split bayesian correlation out of correlation.c

View file

@ -67,37 +67,9 @@ typedef struct {
} AI_alert_correlation; } AI_alert_correlation;
/** Key for the bayesian correlation table */
typedef struct {
/** Snort ID of the first alert */
AI_alert_event_key a;
/** Snort ID of the second alert */
AI_alert_event_key b;
} AI_bayesian_correlation_key;
/** Bayesian alert correlation hash table */
typedef struct {
/** Key for the hash table */
AI_bayesian_correlation_key key;
/** Correlation value */
double correlation;
/** Timestamp of the last acquired correlation value */
time_t latest_computation_time;
/** Make the struct 'hashable' */
UT_hash_handle hh;
} AI_bayesian_correlation;
PRIVATE AI_bayesian_correlation *bayesian_cache = NULL;
PRIVATE AI_hyperalert_info *hyperalerts = NULL; PRIVATE AI_hyperalert_info *hyperalerts = NULL;
PRIVATE AI_snort_alert *alerts = NULL; PRIVATE AI_snort_alert *alerts = NULL;
PRIVATE AI_alert_correlation *correlation_table = NULL; PRIVATE AI_alert_correlation *correlation_table = NULL;
PRIVATE double k_exp_value = 0.0;
PRIVATE pthread_mutex_t mutex; PRIVATE pthread_mutex_t mutex;
@ -260,116 +232,6 @@ _AI_get_function_arguments ( char *orig_stmt, int *n_args )
return args; return args;
} /* ----- end of function _AI_get_function_arguments ----- */ } /* ----- end of function _AI_get_function_arguments ----- */
/**
* \brief Function used for computing the correlation probability A->B of two alerts (A,B) given their timestamps: f(ta, tb) = exp ( -(tb - ta)^2 / k )
* \param ta Timestamp of A
* \param tb Timestamp of B
* \return The correlation probability A->B
*/
PRIVATE double
_AI_bayesian_correlation_function ( time_t ta, time_t tb )
{
if ( k_exp_value == 0.0 )
k_exp_value = - (double) (config->bayesianCorrelationInterval * config->bayesianCorrelationInterval) / log ( CUTOFF_Y_VALUE );
return exp ( -((ta - tb) * (ta - tb)) / k_exp_value );
} /* ----- end of function _AI_bayesian_correlation_function ----- */
/**
* \brief Compute the correlation between two alerts, A -> B: p[A|B] = p[Corr(A,B)] / P[B]
* \param a First alert
* \param b Second alert
* \return A real coefficient representing p[A|B] using the historical information
*/
PRIVATE double
_AI_alert_bayesian_correlation ( AI_snort_alert *a, AI_snort_alert *b )
{
double corr = 0.0;
unsigned int corr_count = 0,
corr_count_a = 0;
BOOL is_a_correlated = false;
AI_bayesian_correlation_key bayesian_key;
AI_bayesian_correlation *found = NULL;
AI_alert_event_key key_a,
key_b;
AI_alert_event *events_a = NULL,
*events_b = NULL;
AI_alert_event *events_iterator_a,
*events_iterator_b;
if ( !a || !b )
return 0.0;
key_a.gid = a->gid;
key_a.sid = a->sid;
key_a.rev = a->rev;
key_b.gid = b->gid;
key_b.sid = b->sid;
key_b.rev = b->rev;
/* Check if this correlation value is already in our cache */
bayesian_key.a = key_a;
bayesian_key.b = key_b;
HASH_FIND ( hh, bayesian_cache, &bayesian_key, sizeof ( bayesian_key ), found );
if ( found )
{
/* Ok, the abs() is not needed until the time starts running backwards, but it's better going safe... */
if ( abs ( time ( NULL ) - found->latest_computation_time ) <= config->bayesianCorrelationCacheValidity )
/* If our alert couple is there, just return it */
return found->correlation;
}
if ( !( events_a = (AI_alert_event*) AI_get_alert_events_by_key ( key_a )) ||
!( events_b = (AI_alert_event*) AI_get_alert_events_by_key ( key_b )))
return 0.0;
for ( events_iterator_a = events_a; events_iterator_a; events_iterator_a = events_iterator_a->next )
{
is_a_correlated = false;
for ( events_iterator_b = events_b; events_iterator_b; events_iterator_b = events_iterator_b->next )
{
if ( abs ( events_iterator_a->timestamp - events_iterator_b->timestamp ) <= config->bayesianCorrelationInterval )
{
is_a_correlated = true;
corr_count++;
corr += _AI_bayesian_correlation_function ( events_iterator_a->timestamp, events_iterator_b->timestamp );
}
}
if ( is_a_correlated )
corr_count_a++;
}
corr /= (double) corr_count;
corr -= ( events_a->count - corr_count_a ) / events_a->count;
/* _dpd.logMsg ( " Number of '%s' alerts correlated to '%s': %u over %u\\n", a->desc, b->desc, corr_count_a, events_a->count ); */
if ( found )
{
found->correlation = corr;
found->latest_computation_time = time ( NULL );
} else {
if ( !( found = ( AI_bayesian_correlation* ) malloc ( sizeof ( AI_bayesian_correlation ))))
_dpd.fatalMsg ( "AIPreproc: Fatal dynamic memory allocation error at %s:%d\n", __FILE__, __LINE__ );
found->key = bayesian_key;
found->correlation = corr;
found->latest_computation_time = time ( NULL );
}
/* _dpd.logMsg ( "Correlation ('%s') -> ('%s'): %f\\n", a->desc, b->desc, corr ); */
return corr;
} /* ----- end of function _AI_alert_bayesian_correlation ----- */
/** /**
* \brief Compute the correlation coefficient between two alerts, as #INTERSECTION(pre(B), post(A)) / #UNION(pre(B), post(A)), on the basis of preconditions and postconditions in the knowledge base's correlation rules * \brief Compute the correlation coefficient between two alerts, as #INTERSECTION(pre(B), post(A)) / #UNION(pre(B), post(A)), on the basis of preconditions and postconditions in the knowledge base's correlation rules
@ -941,7 +803,7 @@ AI_alert_correlation_thread ( void *arg )
corr->key = corr_key; corr->key = corr_key;
kb_correlation = _AI_kb_correlation_coefficient ( corr_key.a, corr_key.b ); kb_correlation = _AI_kb_correlation_coefficient ( corr_key.a, corr_key.b );
bayesian_correlation = _AI_alert_bayesian_correlation ( corr_key.a, corr_key.b ); bayesian_correlation = AI_alert_bayesian_correlation ( corr_key.a, corr_key.b );
if ( bayesian_correlation == 0.0 || config->bayesianCorrelationInterval == 0 ) if ( bayesian_correlation == 0.0 || config->bayesianCorrelationInterval == 0 )
corr->correlation = kb_correlation; corr->correlation = kb_correlation;

View file

@ -361,6 +361,7 @@ void* AI_alerts_pool_thread ( void *arg );
void* AI_serializer_thread ( void *arg ); void* AI_serializer_thread ( void *arg );
const AI_alert_event* AI_get_alert_events_by_key ( AI_alert_event_key ); const AI_alert_event* AI_get_alert_events_by_key ( AI_alert_event_key );
unsigned int AI_get_history_alert_number (); unsigned int AI_get_history_alert_number ();
double AI_alert_bayesian_correlation ( AI_snort_alert *a, AI_snort_alert *b );
/** Function pointer to the function used for getting the alert list (from log file, db, ...) */ /** Function pointer to the function used for getting the alert list (from log file, db, ...) */
extern AI_snort_alert* (*get_alerts)(void); extern AI_snort_alert* (*get_alerts)(void);