mirror of
https://github.com/BlackLight/Snort_AIPreproc.git
synced 2025-01-27 08:20:28 +01:00
SOM neural network support for alert correlation
This commit is contained in:
parent
8090600f65
commit
e17bbfd91e
8 changed files with 325 additions and 76 deletions
4
TODO
4
TODO
|
@ -2,8 +2,7 @@
|
|||
AVERAGE/HIGH PRIORITY:
|
||||
======================
|
||||
|
||||
- Neural network for alert correlation
|
||||
- Modules for correlation coefficients
|
||||
- Supporting extra modules for alert correlation
|
||||
- Code profiling
|
||||
- Comment all the code!!!
|
||||
- Neural network for computing k
|
||||
|
@ -36,4 +35,5 @@ DONE:
|
|||
+ Function names (private functions with _ or __ ?)
|
||||
+ Saving packet flows as .pcap
|
||||
+ Manual alert correlation from the web interface
|
||||
+ Neural network for alert correlation
|
||||
|
||||
|
|
|
@ -77,7 +77,7 @@ __AI_bayesian_correlation_function ( time_t ta, time_t tb )
|
|||
*/
|
||||
|
||||
double
|
||||
AI_alert_bayesian_correlation ( AI_snort_alert *a, AI_snort_alert *b )
|
||||
AI_alert_bayesian_correlation ( const AI_snort_alert *a, const AI_snort_alert *b )
|
||||
{
|
||||
double corr = 0.0;
|
||||
unsigned int corr_count = 0,
|
||||
|
|
|
@ -1227,8 +1227,10 @@ AI_alert_correlation_thread ( void *arg )
|
|||
std_deviation = 0.0,
|
||||
corr_threshold = 0.0,
|
||||
kb_correlation = 0.0,
|
||||
bayesian_correlation = 0.0;
|
||||
bayesian_correlation = 0.0,
|
||||
neural_correlation = 0.0;
|
||||
|
||||
size_t n_correlations = 0;
|
||||
FILE *fp = NULL;
|
||||
|
||||
AI_alert_correlation_key corr_key;
|
||||
|
@ -1348,17 +1350,37 @@ AI_alert_correlation_thread ( void *arg )
|
|||
|
||||
corr_key.a = alert_iterator;
|
||||
corr_key.b = alert_iterator2;
|
||||
|
||||
corr->key = corr_key;
|
||||
corr->correlation = 0.0;
|
||||
n_correlations = 0;
|
||||
|
||||
kb_correlation = __AI_kb_correlation_coefficient ( corr_key.a, corr_key.b );
|
||||
bayesian_correlation = AI_alert_bayesian_correlation ( corr_key.a, corr_key.b );
|
||||
neural_correlation = AI_alert_neural_som_correlation ( corr_key.a, corr_key.b );
|
||||
|
||||
if ( bayesian_correlation == 0.0 || config->bayesianCorrelationInterval == 0 )
|
||||
corr->correlation = kb_correlation;
|
||||
else if ( kb_correlation == 0.0 )
|
||||
corr->correlation = bayesian_correlation;
|
||||
else
|
||||
corr->correlation = ( kb_correlation + bayesian_correlation ) / 2;
|
||||
/* Use the correlation indexes for which we have a value */
|
||||
if ( bayesian_correlation != 0.0 && config->bayesianCorrelationInterval != 0 )
|
||||
{
|
||||
corr->correlation += bayesian_correlation;
|
||||
n_correlations++;
|
||||
}
|
||||
|
||||
if ( kb_correlation != 0.0 )
|
||||
{
|
||||
corr->correlation += kb_correlation;
|
||||
n_correlations++;
|
||||
}
|
||||
|
||||
if ( neural_correlation != 0.0 && config->neuralNetworkTrainingInterval != 0 )
|
||||
{
|
||||
corr->correlation += neural_correlation;
|
||||
n_correlations++;
|
||||
}
|
||||
|
||||
if ( n_correlations != 0 )
|
||||
{
|
||||
corr->correlation /= (double) n_correlations;
|
||||
}
|
||||
|
||||
HASH_ADD ( hh, correlation_table, key, sizeof ( AI_alert_correlation_key ), corr );
|
||||
}
|
||||
|
|
|
@ -630,7 +630,7 @@ som_train_iteration ( som_network_t *net, double *data, size_t iter )
|
|||
* \param n_data Number of vectors in the input set
|
||||
*/
|
||||
|
||||
static void
|
||||
void
|
||||
som_init_weights ( som_network_t *net, double **data, size_t n_data )
|
||||
{
|
||||
size_t i = 0,
|
||||
|
@ -831,8 +831,6 @@ som_train ( som_network_t *net, double **data, size_t n_data, size_t iter )
|
|||
x = 0,
|
||||
y = 0;
|
||||
|
||||
som_init_weights ( net, data, n_data );
|
||||
|
||||
for ( n=0; n < n_data; n++ )
|
||||
{
|
||||
for ( k=1; k <= iter; k++ )
|
||||
|
|
|
@ -59,6 +59,7 @@ void som_network_destroy ( som_network_t* );
|
|||
void som_set_inputs ( som_network_t*, double* );
|
||||
void som_train ( som_network_t*, double**, size_t, size_t );
|
||||
void som_serialize ( som_network_t*, const char* );
|
||||
void som_init_weights ( som_network_t*, double**, size_t );
|
||||
double som_get_best_neuron_coordinates ( som_network_t*, size_t*, size_t* );
|
||||
som_network_t* som_deserialize ( const char* );
|
||||
som_network_t* som_network_new ( size_t, size_t, size_t );
|
||||
|
|
258
neural.c
258
neural.c
|
@ -29,31 +29,167 @@
|
|||
|
||||
#include <alloca.h>
|
||||
#include <limits.h>
|
||||
#include <math.h>
|
||||
#include <pthread.h>
|
||||
#include <stdio.h>
|
||||
#include <sys/stat.h>
|
||||
#include <time.h>
|
||||
#include <unistd.h>
|
||||
|
||||
enum { som_src_ip, som_dst_ip, som_src_port, som_dst_port, som_time, som_alert_id, SOM_NUM_ITEMS };
|
||||
/** Enumeration for the input fields of the SOM neural network */
|
||||
enum { som_src_ip, som_dst_ip, som_src_port, som_dst_port, som_time, som_gid, som_sid, som_rev, SOM_NUM_ITEMS };
|
||||
|
||||
PRIVATE time_t latest_serialization_time = ( time_t ) 0;
|
||||
PRIVATE som_network_t *net = NULL;
|
||||
typedef struct {
|
||||
unsigned int gid;
|
||||
unsigned int sid;
|
||||
unsigned int rev;
|
||||
uint32_t src_ip_addr;
|
||||
uint32_t dst_ip_addr;
|
||||
uint16_t src_port;
|
||||
uint16_t dst_port;
|
||||
time_t timestamp;
|
||||
} AI_som_alert_tuple;
|
||||
|
||||
PRIVATE time_t latest_serialization_time = ( time_t ) 0;
|
||||
PRIVATE som_network_t *net = NULL;
|
||||
PRIVATE pthread_mutex_t neural_mutex;
|
||||
|
||||
/**
|
||||
* \brief Convert an alert row fetched from db to a vector suitable for being elaborated by the SOM neural network
|
||||
* \param alert AI_som_alert_tuple object identifying the alert tuple
|
||||
* \param data Reference to the vector that will contain the SOM data
|
||||
*/
|
||||
|
||||
PRIVATE void
|
||||
__AI_alert_to_som_data ( const AI_som_alert_tuple alert, double **input )
|
||||
{
|
||||
(*input)[som_gid] = (double) alert.gid / (double) USHRT_MAX;
|
||||
(*input)[som_sid] = (double) alert.sid / (double) USHRT_MAX;
|
||||
(*input)[som_rev] = (double) alert.rev / (double) USHRT_MAX;
|
||||
(*input)[som_time] = (double) alert.timestamp / (double) INT_MAX;
|
||||
(*input)[som_src_ip] = (double) alert.src_ip_addr / (double) UINT_MAX;
|
||||
(*input)[som_dst_ip] = (double) alert.dst_ip_addr / (double) UINT_MAX;
|
||||
(*input)[som_src_port] = (double) alert.src_port / (double) USHRT_MAX;
|
||||
(*input)[som_dst_port] = (double) alert.dst_port / (double) USHRT_MAX;
|
||||
} /* ----- end of function __AI_alert_to_som_data ----- */
|
||||
|
||||
/**
|
||||
* \brief Get the distance between two alerts mapped on the SOM neural network
|
||||
* \param alert1 Tuple identifying the first alert
|
||||
* \param alert2 Tuple identifying the second alert
|
||||
* \return The distance between the alerts
|
||||
*/
|
||||
|
||||
PRIVATE double
|
||||
__AI_som_alert_distance ( const AI_som_alert_tuple alert1, const AI_som_alert_tuple alert2 )
|
||||
{
|
||||
double *input1 = NULL,
|
||||
*input2 = NULL;
|
||||
|
||||
size_t x1 = 0,
|
||||
y1 = 0,
|
||||
x2 = 0,
|
||||
y2 = 0;
|
||||
|
||||
if ( !( input1 = (double*) alloca ( SOM_NUM_ITEMS * sizeof ( double ))))
|
||||
{
|
||||
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
||||
}
|
||||
|
||||
if ( !( input2 = (double*) alloca ( SOM_NUM_ITEMS * sizeof ( double ))))
|
||||
{
|
||||
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
||||
}
|
||||
|
||||
pthread_mutex_lock ( &neural_mutex );
|
||||
|
||||
if ( !net )
|
||||
{
|
||||
pthread_mutex_unlock ( &neural_mutex );
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
__AI_alert_to_som_data ( alert1, &input1 );
|
||||
som_set_inputs ( net, input1 );
|
||||
som_get_best_neuron_coordinates ( net, &x1, &y1 );
|
||||
|
||||
__AI_alert_to_som_data ( alert2, &input2 );
|
||||
som_set_inputs ( net, input2 );
|
||||
som_get_best_neuron_coordinates ( net, &x2, &y2 );
|
||||
|
||||
pthread_mutex_unlock ( &neural_mutex );
|
||||
|
||||
/* Return the normalized euclidean distance in [0,1] (the normalization is made considering that the maximum distance
|
||||
* between two points on the output neurons matrix is the distance between the upper-left and bottom-right points) */
|
||||
return sqrt ((double) ( (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) )) /
|
||||
sqrt ((double) ( 2 * (config->outputNeuronsPerSide-1) * (config->outputNeuronsPerSide-1) ));
|
||||
} /* ----- end of function __AI_som_alert_distance ----- */
|
||||
|
||||
/**
|
||||
* \brief Get the SOM neural correlation between two alerts given as AI_snort_alert objects
|
||||
* \param a First alert
|
||||
* \param b Second alert
|
||||
* \return The correlation between a and b computed by the neural network
|
||||
*/
|
||||
|
||||
double
|
||||
AI_alert_neural_som_correlation ( const AI_snort_alert *a, const AI_snort_alert *b )
|
||||
{
|
||||
size_t i = 0;
|
||||
unsigned long long int time_sum = 0;
|
||||
AI_som_alert_tuple t1, t2;
|
||||
|
||||
t1.gid = a->gid;
|
||||
t1.sid = a->sid;
|
||||
t1.rev = a->rev;
|
||||
t1.src_ip_addr = ntohl ( a->ip_src_addr );
|
||||
t1.dst_ip_addr = ntohl ( a->ip_dst_addr );
|
||||
t1.src_port = ntohs ( a->tcp_src_port );
|
||||
t1.dst_port = ntohs ( a->tcp_dst_port );
|
||||
time_sum = (unsigned long long int) a->timestamp;
|
||||
|
||||
/* The timestamp of this alert is computed like the average timestamp of the grouped alerts */
|
||||
for ( i=1; i < a->grouped_alerts_count; i++ )
|
||||
{
|
||||
time_sum += (unsigned long long int) a->grouped_alerts[i-1]->timestamp;
|
||||
}
|
||||
|
||||
t1.timestamp = (time_t) ( time_sum / a->grouped_alerts_count );
|
||||
|
||||
t2.gid = b->gid;
|
||||
t2.sid = b->sid;
|
||||
t2.rev = b->rev;
|
||||
t2.src_ip_addr = ntohl ( b->ip_src_addr );
|
||||
t2.dst_ip_addr = ntohl ( b->ip_dst_addr );
|
||||
t2.src_port = ntohs ( b->tcp_src_port );
|
||||
t2.dst_port = ntohs ( b->tcp_dst_port );
|
||||
time_sum = (unsigned long long int) b->timestamp;
|
||||
|
||||
for ( i=1; i < b->grouped_alerts_count; i++ )
|
||||
{
|
||||
time_sum += (unsigned long long int) b->grouped_alerts[i-1]->timestamp;
|
||||
}
|
||||
|
||||
t2.timestamp = (time_t) ( time_sum / b->grouped_alerts_count );
|
||||
return __AI_som_alert_distance ( t1, t2 );
|
||||
} /* ----- end of function AI_alert_neural_som_correlation ----- */
|
||||
|
||||
/**
|
||||
* \brief Train the neural network taking the alerts from the latest serialization time
|
||||
*/
|
||||
|
||||
PRIVATE void
|
||||
AI_som_train ()
|
||||
__AI_som_train ()
|
||||
{
|
||||
unsigned long snort_id = 0;
|
||||
double **inputs;
|
||||
char query[1024] = { 0 };
|
||||
size_t i = 0,
|
||||
num_rows = 0;
|
||||
double **inputs = NULL;
|
||||
|
||||
char query[1024] = { 0 };
|
||||
|
||||
size_t i = 0,
|
||||
num_rows = 0;
|
||||
|
||||
DB_result res;
|
||||
DB_row row;
|
||||
AI_som_alert_tuple *tuples = NULL;
|
||||
|
||||
if ( !DB_out_init() )
|
||||
{
|
||||
|
@ -62,19 +198,19 @@ AI_som_train ()
|
|||
|
||||
#ifdef HAVE_LIBMYSQLCLIENT
|
||||
snprintf ( query, sizeof ( query ),
|
||||
"SELECT gid, sid, rev, timestamp, ip_src_addr, ip_dst_addr, tcp_src_port, tcp_dst_port "
|
||||
"FROM %s a JOIN %s ip JOIN %s tcp "
|
||||
"ON a.ip_hdr=ip.ip_hdr_id AND a.tcp_hdr=tcp.tcp_hdr_id "
|
||||
"WHERE unix_timestamp(timestamp) > %lu",
|
||||
"SELECT gid, sid, rev, unix_timestamp(timestamp), ip_src_addr, ip_dst_addr, tcp_src_port, tcp_dst_port "
|
||||
"FROM (%s a LEFT JOIN %s ip ON a.ip_hdr=ip.ip_hdr_id) LEFT JOIN %s tcp "
|
||||
"ON a.tcp_hdr=tcp.tcp_hdr_id "
|
||||
"WHERE unix_timestamp(timestamp) >= %lu",
|
||||
outdb_config[ALERTS_TABLE], outdb_config[IPV4_HEADERS_TABLE], outdb_config[TCP_HEADERS_TABLE],
|
||||
latest_serialization_time
|
||||
);
|
||||
#elif HAVE_LIBPQ
|
||||
snprintf ( query, sizeof ( query ),
|
||||
"SELECT gid, sid, rev, timestamp, ip_src_addr, ip_dst_addr, tcp_src_port, tcp_dst_port "
|
||||
"FROM %s a JOIN %s ip JOIN %s tcp "
|
||||
"ON a.ip_hdr=ip.ip_hdr_id AND a.tcp_hdr=tcp.tcp_hdr_id "
|
||||
"WHERE date_part ('epoch', \"timestamp\"(timestamp)) > %lu",
|
||||
"SELECT gid, sid, rev, date_part('epoch', \"timestamp\"(timestamp)), ip_src_addr, ip_dst_addr, tcp_src_port, tcp_dst_port "
|
||||
"FROM (%s a LEFT JOIN %s ip ON a.ip_hdr=ip.ip_hdr_id) LEFT JOIN %s tcp "
|
||||
"ON a.tcp_hdr=tcp.tcp_hdr_id "
|
||||
"WHERE date_part ('epoch', \"timestamp\"(timestamp)) >= %lu",
|
||||
outdb_config[ALERTS_TABLE], outdb_config[IPV4_HEADERS_TABLE], outdb_config[TCP_HEADERS_TABLE],
|
||||
latest_serialization_time
|
||||
);
|
||||
|
@ -87,32 +223,67 @@ AI_som_train ()
|
|||
|
||||
num_rows = DB_num_rows ( res );
|
||||
|
||||
if ( num_rows == 0 )
|
||||
{
|
||||
DB_free_result ( res );
|
||||
latest_serialization_time = time ( NULL );
|
||||
return;
|
||||
}
|
||||
|
||||
if ( !( inputs = (double**) alloca ( num_rows * sizeof ( double* ))))
|
||||
{
|
||||
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
||||
}
|
||||
|
||||
if ( !( tuples = (AI_som_alert_tuple*) alloca ( num_rows * sizeof ( AI_som_alert_tuple ))))
|
||||
{
|
||||
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
||||
}
|
||||
|
||||
for ( i=0; i < num_rows; i++ )
|
||||
{
|
||||
row = (DB_row) DB_fetch_row ( res );
|
||||
snort_id = 0;
|
||||
|
||||
tuples[i].gid = row[0] ? strtoul ( row[0], NULL, 10 ) : 0;
|
||||
tuples[i].sid = row[1] ? strtoul ( row[1], NULL, 10 ) : 0;
|
||||
tuples[i].rev = row[2] ? strtoul ( row[2], NULL, 10 ) : 0;
|
||||
tuples[i].timestamp = row[3] ? (time_t) strtol ( row[3], NULL, 10 ) : (time_t) 0;
|
||||
tuples[i].src_ip_addr = row[4] ? ntohl ( inet_addr ( row[4] )) : 0;
|
||||
tuples[i].dst_ip_addr = row[5] ? ntohl ( inet_addr ( row[5] )) : 0;
|
||||
tuples[i].src_port = row[6] ? (uint16_t) strtoul ( row[6], NULL, 10 ) : 0;
|
||||
tuples[i].dst_port = row[7] ? (uint16_t) strtoul ( row[7], NULL, 10 ) : 0;
|
||||
|
||||
if ( !( inputs[i] = (double*) alloca ( SOM_NUM_ITEMS * sizeof ( double ))))
|
||||
{
|
||||
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
||||
}
|
||||
|
||||
snort_id = (( strtoul ( row[0], NULL, 10 ) & 0xFFFF ) << 16 ) | ( strtoul ( row[1], NULL, 10 ) & 0xFFFF );
|
||||
inputs[i][som_alert_id] = (double) snort_id / (double) UINT_MAX;
|
||||
inputs[i][som_time] = (double) strtol ( row[3], NULL, 10 ) / (double) INT_MAX;
|
||||
inputs[i][som_src_ip] = (double) ntohl ( inet_addr ( row[4] )) / (double) UINT_MAX;
|
||||
inputs[i][som_dst_ip] = (double) ntohl ( inet_addr ( row[5] )) / (double) UINT_MAX;
|
||||
inputs[i][som_src_port] = (double) strtol ( row[6], NULL, 10 ) / (double) USHRT_MAX;
|
||||
inputs[i][som_dst_port] = (double) strtol ( row[7], NULL, 10 ) / (double) USHRT_MAX;
|
||||
__AI_alert_to_som_data ( tuples[i], &inputs[i] );
|
||||
}
|
||||
|
||||
DB_free_result ( res );
|
||||
} /* ----- end of function AI_som_train ----- */
|
||||
|
||||
pthread_mutex_lock ( &neural_mutex );
|
||||
|
||||
if ( !net )
|
||||
{
|
||||
if ( !( net = som_network_new ( SOM_NUM_ITEMS, config->outputNeuronsPerSide, config->outputNeuronsPerSide )))
|
||||
{
|
||||
AI_fatal_err ( "AIPreproc: Could not create the neural network", __FILE__, __LINE__ );
|
||||
}
|
||||
|
||||
som_init_weights ( net, inputs, num_rows );
|
||||
som_train ( net, inputs, num_rows, config->neural_train_steps );
|
||||
} else {
|
||||
som_train ( net, inputs, num_rows, config->neural_train_steps );
|
||||
}
|
||||
|
||||
pthread_mutex_unlock ( &neural_mutex );
|
||||
|
||||
latest_serialization_time = time ( NULL );
|
||||
net->serialization_time = latest_serialization_time;
|
||||
som_serialize ( net, config->netfile );
|
||||
} /* ----- end of function __AI_som_train ----- */
|
||||
|
||||
/**
|
||||
* \brief Thread for managing the self-organazing map (SOM) neural network for the alert correlation
|
||||
|
@ -122,9 +293,10 @@ void*
|
|||
AI_neural_thread ( void *arg )
|
||||
{
|
||||
BOOL do_train = false;
|
||||
FILE *fp = NULL;
|
||||
struct stat st;
|
||||
|
||||
pthread_mutex_init ( &neural_mutex, NULL );
|
||||
|
||||
if ( !config->netfile )
|
||||
{
|
||||
AI_fatal_err ( "AIPreproc: neural network thread launched but netfile option was not specified", __FILE__, __LINE__ );
|
||||
|
@ -140,39 +312,25 @@ AI_neural_thread ( void *arg )
|
|||
if ( stat ( config->netfile, &st ) < 0 )
|
||||
{
|
||||
do_train = true;
|
||||
}
|
||||
|
||||
if ( !do_train )
|
||||
{
|
||||
if ( !( fp = fopen ( config->netfile, "r" )))
|
||||
} else {
|
||||
if ( !( net = som_deserialize ( config->netfile )))
|
||||
{
|
||||
AI_fatal_err ( "AIPreproc: The neural network file exists but it is not readable", __FILE__, __LINE__ );
|
||||
AI_fatal_err ( "AIPreproc: Error in deserializing the neural network from the network file", __FILE__, __LINE__ );
|
||||
}
|
||||
|
||||
fread ( &latest_serialization_time, sizeof ( time_t ), 1, fp );
|
||||
|
||||
/* If more than N seconds passed from the latest serialization, re-train the neural network */
|
||||
if ( (int) ( time (NULL) - latest_serialization_time ) > config->neuralNetworkTrainingInterval )
|
||||
if ( (int) ( time (NULL) - net->serialization_time ) > config->neuralNetworkTrainingInterval )
|
||||
{
|
||||
do_train = true;
|
||||
}
|
||||
|
||||
fclose ( fp );
|
||||
}
|
||||
|
||||
if ( !do_train )
|
||||
if ( do_train )
|
||||
{
|
||||
if ( !net )
|
||||
{
|
||||
if ( !( net = som_deserialize ( config->netfile )))
|
||||
{
|
||||
AI_fatal_err ( "AIPreproc: Error in deserializing the neural network from the network file", __FILE__, __LINE__ );
|
||||
}
|
||||
}
|
||||
|
||||
sleep ( 5 );
|
||||
continue;
|
||||
__AI_som_train();
|
||||
}
|
||||
|
||||
sleep ( config->neuralNetworkTrainingInterval );
|
||||
}
|
||||
|
||||
pthread_exit ((void*) 0);
|
||||
|
|
67
spp_ai.c
67
spp_ai.c
|
@ -196,26 +196,29 @@ static AI_config * AI_parse(char *args)
|
|||
int n_hierarchy_nodes = 0;
|
||||
|
||||
unsigned short webserv_port = 0;
|
||||
unsigned long cleanup_interval = 0,
|
||||
stream_expire_interval = 0,
|
||||
alertfile_len = 0,
|
||||
|
||||
unsigned long alertfile_len = 0,
|
||||
alert_bufsize = 0,
|
||||
alert_clustering_interval = 0,
|
||||
alert_correlation_weight = 0,
|
||||
alert_history_file_len = 0,
|
||||
alert_serialization_interval = 0,
|
||||
alert_bufsize = 0,
|
||||
bayesian_correlation_interval = 0,
|
||||
bayesian_correlation_cache_validity = 0,
|
||||
bayesian_correlation_interval = 0,
|
||||
cleanup_interval = 0,
|
||||
clusterfile_len = 0,
|
||||
cluster_max_alert_interval = 0,
|
||||
corr_rules_dir_len = 0,
|
||||
corr_alerts_dir_len = 0,
|
||||
webserv_dir_len = 0,
|
||||
webserv_banner_len = 0,
|
||||
alert_clustering_interval = 0,
|
||||
database_parsing_interval = 0,
|
||||
corr_rules_dir_len = 0,
|
||||
correlation_graph_interval = 0,
|
||||
database_parsing_interval = 0,
|
||||
manual_correlations_parsing_interval = 0,
|
||||
neural_network_training_interval = 0,
|
||||
output_neurons_per_side = 0;
|
||||
neural_train_steps = 0,
|
||||
output_neurons_per_side = 0,
|
||||
stream_expire_interval = 0,
|
||||
webserv_banner_len = 0,
|
||||
webserv_dir_len = 0;
|
||||
|
||||
BOOL has_cleanup_interval = false,
|
||||
has_stream_expire_interval = false,
|
||||
|
@ -539,6 +542,48 @@ static AI_config * AI_parse(char *args)
|
|||
config->outputNeuronsPerSide = output_neurons_per_side;
|
||||
_dpd.logMsg( " Output neurons per side: %u\n", config->outputNeuronsPerSide );
|
||||
|
||||
/* Parsing the neural_train_steps option */
|
||||
if (( arg = (char*) strcasestr( args, "neural_train_steps" ) ))
|
||||
{
|
||||
for ( arg += strlen("neural_train_steps");
|
||||
*arg && (*arg < '0' || *arg > '9');
|
||||
arg++ );
|
||||
|
||||
if ( !(*arg) )
|
||||
{
|
||||
AI_fatal_err ( "neural_train_steps option used but "
|
||||
"no value specified", __FILE__, __LINE__ );
|
||||
}
|
||||
|
||||
neural_train_steps = strtoul ( arg, NULL, 10 );
|
||||
} else {
|
||||
neural_train_steps = DEFAULT_NEURAL_TRAIN_STEPS;
|
||||
}
|
||||
|
||||
config->neural_train_steps = neural_train_steps;
|
||||
_dpd.logMsg( " Neural train steps: %u\n", config->neural_train_steps );
|
||||
|
||||
/* Parsing the alert_correlation_weight option */
|
||||
if (( arg = (char*) strcasestr( args, "alert_correlation_weight" ) ))
|
||||
{
|
||||
for ( arg += strlen("alert_correlation_weight");
|
||||
*arg && (*arg < '0' || *arg > '9');
|
||||
arg++ );
|
||||
|
||||
if ( !(*arg) )
|
||||
{
|
||||
AI_fatal_err ( "alert_correlation_weight option used but "
|
||||
"no value specified", __FILE__, __LINE__ );
|
||||
}
|
||||
|
||||
alert_correlation_weight = strtoul ( arg, NULL, 10 );
|
||||
} else {
|
||||
alert_correlation_weight = DEFAULT_ALERT_CORRELATION_WEIGHT;
|
||||
}
|
||||
|
||||
config->alert_correlation_weight = alert_correlation_weight;
|
||||
_dpd.logMsg( " Alert correlation weight: %u\n", config->alert_correlation_weight );
|
||||
|
||||
/* Parsing the alertfile option */
|
||||
if (( arg = (char*) strcasestr( args, "alertfile" ) ))
|
||||
{
|
||||
|
|
27
spp_ai.h
27
spp_ai.h
|
@ -88,6 +88,14 @@
|
|||
/** Default number of neurons per side on the output matrix of the SOM neural network */
|
||||
#define DEFAULT_OUTPUT_NEURONS_PER_SIDE 20
|
||||
|
||||
/** Default number of steps used for training the neural network */
|
||||
#define DEFAULT_NEURAL_TRAIN_STEPS 10
|
||||
|
||||
/** Default number of alerts needed in the history file or database for letting a certain
|
||||
* heuristic correlation index weight be =~ 0.95 (the weight monotonically increases
|
||||
* with the number of alerts according to a hyperbolic tangent function) */
|
||||
#define DEFAULT_ALERT_CORRELATION_WEIGHT 400
|
||||
|
||||
/** Default web server port */
|
||||
#define DEFAULT_WEBSERV_PORT 7654
|
||||
|
||||
|
@ -190,6 +198,14 @@ typedef struct
|
|||
/** Number of neurons per side on the output matrix of the SOM neural network */
|
||||
unsigned long outputNeuronsPerSide;
|
||||
|
||||
/** Number of alerts needed in the history file or database for letting a certain
|
||||
* heuristic correlation index weight be =~ 0.95 (the weight monotonically increases
|
||||
* with the number of alerts according to a hyperbolic tangent function) */
|
||||
unsigned long alert_correlation_weight;
|
||||
|
||||
/** Number of steps used for training the neural network */
|
||||
unsigned long neural_train_steps;
|
||||
|
||||
/** Size of the alerts' buffer to be periodically sent to the serialization thread */
|
||||
unsigned long alert_bufsize;
|
||||
|
||||
|
@ -427,6 +443,7 @@ typedef struct {
|
|||
UT_hash_handle hh;
|
||||
} AI_alert_correlation;
|
||||
/*****************************************************************/
|
||||
|
||||
/** Enumeration for describing the table in the output database */
|
||||
enum { ALERTS_TABLE, IPV4_HEADERS_TABLE, TCP_HEADERS_TABLE, PACKET_STREAMS_TABLE, CLUSTERED_ALERTS_TABLE, CORRELATED_ALERTS_TABLE, N_TABLES };
|
||||
|
||||
|
@ -435,6 +452,13 @@ static const char *outdb_config[] __attribute__ (( unused )) = {
|
|||
"ca_alerts", "ca_ipv4_headers", "ca_tcp_headers",
|
||||
"ca_packet_streams", "ca_clustered_alerts", "ca_correlated_alerts"
|
||||
};
|
||||
|
||||
/*
|
||||
* The unused attribute is needed for gcc to avoid raising a warning
|
||||
* of "unused variable" when compiling with -Wall -pedantic -pedatic errors,
|
||||
* since this array is declared here but only used in two source files
|
||||
*/
|
||||
|
||||
/*****************************************************************/
|
||||
|
||||
int preg_match ( const char*, char*, char***, int* );
|
||||
|
@ -471,7 +495,8 @@ void* AI_serializer_thread ( void* );
|
|||
void* AI_neural_thread ( void* );
|
||||
const AI_alert_event* AI_get_alert_events_by_key ( AI_alert_event_key );
|
||||
unsigned int AI_get_history_alert_number ();
|
||||
double AI_alert_bayesian_correlation ( AI_snort_alert *a, AI_snort_alert *b );
|
||||
double AI_alert_bayesian_correlation ( const AI_snort_alert*, const AI_snort_alert* );
|
||||
double AI_alert_neural_som_correlation ( const AI_snort_alert*, const AI_snort_alert* );
|
||||
|
||||
void AI_outdb_mutex_initialize ();
|
||||
void* AI_store_alert_to_db_thread ( void* );
|
||||
|
|
Loading…
Add table
Reference in a new issue