Snort_AIPreproc/bayesian.c

183 lines
5.4 KiB
C
Executable file

/*
* =====================================================================================
*
* Filename: bayesian.c
*
* Description: Module for managing bayesian not supervised correlation
*
* Version: 0.1
* Created: 28/09/2010 19:37:08
* Revision: none
* Compiler: gcc
*
* Author: BlackLight (http://0x00.ath.cx), <blacklight@autistici.org>
* Licence: GNU GPL v.3
* Company: DO WHAT YOU WANT CAUSE A PIRATE IS FREE, YOU ARE A PIRATE!
*
* =====================================================================================
*/
#include "spp_ai.h"
#include <math.h>
#include <time.h>
/** \defgroup correlation Module for the correlation of hyperalerts
* @{ */
/** Key for the bayesian correlation table */
typedef struct {
/** Snort ID of the first alert */
AI_alert_event_key a;
/** Snort ID of the second alert */
AI_alert_event_key b;
} AI_bayesian_correlation_key;
/** Bayesian alert correlation hash table */
typedef struct {
/** Key for the hash table */
AI_bayesian_correlation_key key;
/** Correlation value */
double correlation;
/** Timestamp of the last acquired correlation value */
time_t latest_computation_time;
/** Make the struct 'hashable' */
UT_hash_handle hh;
} AI_bayesian_correlation;
PRIVATE AI_bayesian_correlation *bayesian_cache = NULL;
PRIVATE double k_exp_value = 0.0;
/**
* \brief Get the current weight of the bayesian correlation index using a hyperbolic tangent function with a parameter expressed in function of the current number of alerts in the history file
* \return The weight of the correlation index ( 0 <= weight < 1 )
*/
double
AI_bayesian_correlation_weight ()
{
double x = (double) AI_get_history_alert_number(),
k = (double) config->alert_correlation_weight / HYPERBOLIC_TANGENT_SOLUTION;
return (( exp(x/k) - exp(-x/k) ) / ( exp(x/k) + exp(-x/k) ));
} /* ----- end of function AI_bayesian_correlation_weight ----- */
/**
* \brief Function used for computing the correlation probability A->B of two alerts (A,B) given their timestamps: f(ta, tb) = exp ( -(tb - ta)^2 / k )
* \param ta Timestamp of A
* \param tb Timestamp of B
* \return The correlation probability A->B
*/
PRIVATE double
__AI_bayesian_correlation_function ( time_t ta, time_t tb )
{
if ( k_exp_value == 0.0 )
k_exp_value = - (double) (config->bayesianCorrelationInterval * config->bayesianCorrelationInterval) / log ( CUTOFF_Y_VALUE );
return exp ( -((ta - tb) * (ta - tb)) / k_exp_value );
} /* ----- end of function __AI_bayesian_correlation_function ----- */
/**
* \brief Compute the correlation between two alerts, A -> B: p[A|B] = p[Corr(A,B)] / P[B]
* \param a First alert
* \param b Second alert
* \return A real coefficient representing p[A|B] using the historical information
*/
double
AI_alert_bayesian_correlation ( const AI_snort_alert *a, const AI_snort_alert *b )
{
double corr = 0.0;
unsigned int corr_count = 0,
corr_count_a = 0;
bool is_a_correlated = false;
AI_bayesian_correlation_key bayesian_key;
AI_bayesian_correlation *found = NULL;
AI_alert_event_key key_a,
key_b;
AI_alert_event *events_a = NULL,
*events_b = NULL;
AI_alert_event *events_iterator_a,
*events_iterator_b;
if ( !a || !b )
return 0.0;
key_a.gid = a->gid;
key_a.sid = a->sid;
key_a.rev = a->rev;
key_b.gid = b->gid;
key_b.sid = b->sid;
key_b.rev = b->rev;
/* Check if this correlation value is already in our cache */
bayesian_key.a = key_a;
bayesian_key.b = key_b;
HASH_FIND ( hh, bayesian_cache, &bayesian_key, sizeof ( bayesian_key ), found );
if ( found )
{
/* Ok, the abs() is not needed until the time starts running backwards, but it's better going safe... */
if ( abs ( time ( NULL ) - found->latest_computation_time ) <= config->bayesianCorrelationCacheValidity )
/* If our alert couple is there, just return it */
return found->correlation;
}
if ( !( events_a = (AI_alert_event*) AI_get_alert_events_by_key ( key_a )) ||
!( events_b = (AI_alert_event*) AI_get_alert_events_by_key ( key_b )))
return 0.0;
for ( events_iterator_a = events_a; events_iterator_a; events_iterator_a = events_iterator_a->next )
{
is_a_correlated = false;
for ( events_iterator_b = events_b; events_iterator_b; events_iterator_b = events_iterator_b->next )
{
if ( abs ( events_iterator_a->timestamp - events_iterator_b->timestamp ) <= config->bayesianCorrelationInterval )
{
is_a_correlated = true;
corr_count++;
corr += __AI_bayesian_correlation_function ( events_iterator_a->timestamp, events_iterator_b->timestamp );
}
}
if ( is_a_correlated )
corr_count_a++;
}
if ( !corr_count )
{
corr = 0.0;
} else {
corr /= (double) corr_count;
corr -= ( events_a->count - corr_count_a ) / events_a->count;
}
if ( found )
{
found->correlation = corr;
found->latest_computation_time = time ( NULL );
} else {
if ( !( found = ( AI_bayesian_correlation* ) malloc ( sizeof ( AI_bayesian_correlation ))))
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
found->key = bayesian_key;
found->correlation = corr;
found->latest_computation_time = time ( NULL );
}
return corr;
} /* ----- end of function AI_alert_bayesian_correlation ----- */
/** @} */