mirror of
https://github.com/BlackLight/Snort_AIPreproc.git
synced 2024-11-16 13:37:14 +01:00
756 lines
20 KiB
C
Executable file
756 lines
20 KiB
C
Executable file
/*
|
|
* =====================================================================================
|
|
*
|
|
* Filename: cluster.c
|
|
*
|
|
* Description: Module for managing alarm clustering and cluter hierarchies
|
|
*
|
|
* Version: 0.1
|
|
* Created: 12/08/2010 12:43:28
|
|
* Revision: none
|
|
* Compiler: gcc
|
|
*
|
|
* Author: BlackLight (http://0x00.ath.cx), <blacklight@autistici.org>
|
|
* Licence: GNU GPL v.3
|
|
* Company: DO WHAT YOU WANT CAUSE A PIRATE IS FREE, YOU ARE A PIRATE!
|
|
*
|
|
* =====================================================================================
|
|
*/
|
|
|
|
#include "spp_ai.h"
|
|
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <unistd.h>
|
|
|
|
/** \defgroup cluster Manage the clustering of alarms
|
|
* @{ */
|
|
|
|
/** Identifier key for a cluster attribute value */
|
|
typedef struct {
|
|
int min;
|
|
int max;
|
|
} attribute_key;
|
|
|
|
/** Representation of a cluster attribute value */
|
|
typedef struct {
|
|
attribute_key key;
|
|
cluster_type type;
|
|
unsigned int count;
|
|
UT_hash_handle hh;
|
|
} attribute_value;
|
|
|
|
/** Structure containing the count of occurrences of the single alerts in the log */
|
|
typedef struct {
|
|
AI_hyperalert_key key;
|
|
unsigned int count;
|
|
UT_hash_handle hh;
|
|
} AI_alert_occurrence;
|
|
|
|
|
|
PRIVATE hierarchy_node *h_root[CLUSTER_TYPES] = { NULL };
|
|
PRIVATE AI_snort_alert *alert_log = NULL;
|
|
PRIVATE pthread_mutex_t mutex;
|
|
|
|
/**
|
|
* \brief Function that picks up the heuristic value for a clustering attribute in according to Julisch's heuristic (ACM, Vol.2, No.3, 09 2002, pag.124)
|
|
* \param type Attribute type
|
|
* \return The heuristic coefficient for that attribute, -1 if no clustering information is available for that attribute
|
|
*/
|
|
|
|
PRIVATE int
|
|
__AI_heuristic_func ( cluster_type type )
|
|
{
|
|
AI_snort_alert *alert_iterator;
|
|
attribute_key key;
|
|
attribute_value *values = NULL;
|
|
attribute_value *value = NULL;
|
|
attribute_value *found = NULL;
|
|
int max = 0;
|
|
|
|
if ( type == none || !alert_log || !h_root[type] )
|
|
return -1;
|
|
|
|
for ( alert_iterator = alert_log; alert_iterator; alert_iterator = alert_iterator->next )
|
|
{
|
|
if ( !alert_iterator->h_node[type] )
|
|
continue;
|
|
|
|
key.min = alert_iterator->h_node[type]->min_val;
|
|
key.max = alert_iterator->h_node[type]->max_val;
|
|
|
|
if ( values )
|
|
{
|
|
HASH_FIND ( hh, values, &key, sizeof ( attribute_key ), found );
|
|
}
|
|
|
|
if ( !found )
|
|
{
|
|
if ( !( value = ( attribute_value* ) malloc ( sizeof ( attribute_value )) ))
|
|
{
|
|
AI_fatal_err ( "Fatal dynamic memory allocation failure", __FILE__, __LINE__ );
|
|
}
|
|
|
|
memset ( value, 0, sizeof ( attribute_value ));
|
|
value->key = key;
|
|
value->type = type;
|
|
value->count = 1;
|
|
HASH_ADD ( hh, values, key, sizeof ( attribute_key ), value );
|
|
} else {
|
|
found->count++;
|
|
}
|
|
}
|
|
|
|
for ( value = values; value; value = ( attribute_value* ) value->hh.next )
|
|
{
|
|
if ( value->count > max )
|
|
{
|
|
max = value->count;
|
|
}
|
|
}
|
|
|
|
while ( values )
|
|
{
|
|
value = values;
|
|
HASH_DEL ( values, value );
|
|
free ( value );
|
|
}
|
|
|
|
return max;
|
|
} /* ----- end of function __AI_heuristic_func ----- */
|
|
|
|
/**
|
|
* \brief Create a new clustering hierarchy node
|
|
* \param label Label for the node
|
|
* \param min_val Minimum value for the range represented by the node
|
|
* \param max_val Maximum value for the range represented by the node
|
|
* \return The brand new node if the allocation was ok, otherwise abort the application
|
|
*/
|
|
|
|
PRIVATE hierarchy_node*
|
|
__AI_hierarchy_node_new ( char *label, int min_val, int max_val )
|
|
{
|
|
hierarchy_node *n = NULL;
|
|
|
|
if ( !( n = ( hierarchy_node* ) malloc ( sizeof ( hierarchy_node )) ))
|
|
{
|
|
AI_fatal_err ( "Fatal dynamic memory allocation failure", __FILE__, __LINE__ );
|
|
}
|
|
|
|
n->min_val = min_val;
|
|
n->max_val = max_val;
|
|
n->nchildren = 0;
|
|
n->children = NULL;
|
|
n->parent = NULL;
|
|
strncpy ( n->label, label, sizeof ( n->label ));
|
|
|
|
return n;
|
|
} /* ----- end of function __AI_hierarchy_node_new ----- */
|
|
|
|
|
|
/**
|
|
* \brief Append a node to a clustering hierarchy node
|
|
* \param parent Parent node
|
|
* \param child Child node
|
|
*/
|
|
|
|
PRIVATE void
|
|
__AI_hierarchy_node_append ( hierarchy_node *parent, hierarchy_node *child )
|
|
{
|
|
if ( !( parent->children = ( hierarchy_node** ) realloc ( parent->children, (++(parent->nchildren)) * sizeof ( hierarchy_node* )) ))
|
|
{
|
|
AI_fatal_err ( "Fatal dynamic memory allocation failure", __FILE__, __LINE__ );
|
|
}
|
|
|
|
parent->children[ parent->nchildren - 1 ] = child;
|
|
child->parent = parent;
|
|
} /* ----- end of function __AI_hierarchy_node_append ----- */
|
|
|
|
|
|
/**
|
|
* \brief Get the minimum node in a hierarchy tree that matches a certain value
|
|
* \param val Value to be matched in the range
|
|
* \param root Root of the hierarchy
|
|
* \return The minimum node that matches the value if any, NULL otherwise
|
|
*/
|
|
PRIVATE hierarchy_node*
|
|
__AI_get_min_hierarchy_node ( int val, hierarchy_node *root )
|
|
{
|
|
int i;
|
|
hierarchy_node *next = NULL;
|
|
|
|
if ( !root )
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
if ( (unsigned) val < (unsigned) root->min_val || (unsigned) val > (unsigned) root->max_val )
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
for ( i=0; i < root->nchildren && !next; i++ )
|
|
{
|
|
if ( root->children[i]->min_val <= val && root->children[i]->max_val >= val )
|
|
{
|
|
next = root->children[i];
|
|
}
|
|
}
|
|
|
|
if ( !next )
|
|
return root;
|
|
|
|
return __AI_get_min_hierarchy_node ( val, next );
|
|
} /* ----- end of function __AI_get_min_hierarchy_node ----- */
|
|
|
|
/**
|
|
* \brief Check if two alerts are semantically equal
|
|
* \param a1 First alert
|
|
* \param a2 Second alert
|
|
* \return True if they are equal, false otherwise
|
|
*/
|
|
|
|
PRIVATE bool
|
|
__AI_equal_alerts ( AI_snort_alert *a1, AI_snort_alert *a2 )
|
|
{
|
|
if ( a1->gid != a2->gid || a1->sid != a2->sid || a1->rev != a2->rev )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if ( a1->h_node[src_addr] && a2->h_node[src_addr] )
|
|
{
|
|
if ( a1->h_node[src_addr]->min_val != a2->h_node[src_addr]->min_val ||
|
|
a1->h_node[src_addr]->max_val != a2->h_node[src_addr]->max_val )
|
|
return false;
|
|
}
|
|
|
|
if ( a1->h_node[dst_addr] && a2->h_node[dst_addr] )
|
|
{
|
|
if ( a1->h_node[dst_addr]->min_val != a2->h_node[dst_addr]->min_val ||
|
|
a1->h_node[dst_addr]->max_val != a2->h_node[dst_addr]->max_val )
|
|
return false;
|
|
}
|
|
|
|
if ( a1->h_node[src_port] && a2->h_node[src_port] )
|
|
{
|
|
if ( a1->h_node[src_port]->min_val != a2->h_node[src_port]->min_val ||
|
|
a1->h_node[src_port]->max_val != a2->h_node[src_port]->max_val )
|
|
return false;
|
|
}
|
|
|
|
if ( a1->h_node[dst_port] && a2->h_node[dst_port] )
|
|
{
|
|
if ( a1->h_node[dst_port]->min_val != a2->h_node[dst_port]->min_val ||
|
|
a1->h_node[dst_port]->max_val != a2->h_node[dst_port]->max_val )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
} /* ----- end of function __AI_equal_alerts ----- */
|
|
|
|
|
|
/**
|
|
* \brief Merge the alerts marked as equal in the log
|
|
* \param log Alert log reference
|
|
* \return The number of merged couples
|
|
*/
|
|
|
|
PRIVATE int
|
|
__AI_merge_alerts ( AI_snort_alert **log )
|
|
{
|
|
AI_snort_alert *tmp, *tmp2, *tmp3;
|
|
AI_alerts_couple *alerts_couple;
|
|
int count = 0;
|
|
|
|
for ( tmp = *log; tmp; tmp = tmp->next )
|
|
{
|
|
for ( tmp2 = *log; tmp2; )
|
|
{
|
|
if ( tmp2->next )
|
|
{
|
|
/* If the two alerts are in the same clustering time window (if a time window was defined...) */
|
|
if ( config->clusterMaxAlertInterval == 0 ||
|
|
( config->clusterMaxAlertInterval > 0 && abs ( tmp->timestamp - tmp2->next->timestamp ) <= config->clusterMaxAlertInterval ))
|
|
{
|
|
if ( tmp != tmp2->next )
|
|
{
|
|
/* If the two alerts are equal... */
|
|
if ( __AI_equal_alerts ( tmp, tmp2->next ))
|
|
{
|
|
/* If we are storing the outputs of the module to a database, save the cluster containing the two alerts */
|
|
if ( config->outdbtype != outdb_none )
|
|
{
|
|
if ( !( alerts_couple = (AI_alerts_couple*) malloc ( sizeof ( AI_alerts_couple ))))
|
|
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
|
|
|
alerts_couple->alert1 = tmp;
|
|
alerts_couple->alert2 = tmp2->next;
|
|
|
|
AI_store_cluster_to_db ( alerts_couple );
|
|
}
|
|
|
|
/* Merge the two alerts */
|
|
if ( !( tmp->grouped_alerts = ( AI_snort_alert** ) realloc ( tmp->grouped_alerts, (++(tmp->grouped_alerts_count)) * sizeof ( AI_snort_alert* ))))
|
|
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
|
|
|
tmp->grouped_alerts[ tmp->grouped_alerts_count - 1 ] = tmp2->next;
|
|
count++;
|
|
|
|
tmp3 = tmp2->next->next;
|
|
tmp2->next = tmp3;
|
|
}
|
|
}
|
|
}
|
|
|
|
tmp2 = tmp2->next;
|
|
} else
|
|
break;
|
|
}
|
|
}
|
|
|
|
return count;
|
|
} /* ----- end of function __AI_merge_alerts ----- */
|
|
|
|
/**
|
|
* \brief Get the average heterogeneity coefficient of the set of alerts
|
|
* \return The average heterogeneity coefficient of the set of alerts
|
|
*/
|
|
|
|
double
|
|
__AI_get_alerts_heterogeneity ( int *alert_count )
|
|
{
|
|
double heterogeneity = 0.0;
|
|
int distinct_count = 0;
|
|
|
|
AI_hyperalert_key key;
|
|
AI_snort_alert *alert_iterator = NULL;
|
|
|
|
AI_alert_occurrence *table = NULL,
|
|
*found = NULL;
|
|
*alert_count = 0;
|
|
|
|
for ( alert_iterator = alert_log; alert_iterator; alert_iterator = alert_iterator->next )
|
|
{
|
|
found = NULL;
|
|
*alert_count += alert_iterator->grouped_alerts_count;
|
|
key.gid = alert_iterator->gid;
|
|
key.sid = alert_iterator->sid;
|
|
key.rev = alert_iterator->rev;
|
|
HASH_FIND ( hh, table, &key, sizeof ( AI_hyperalert_key ), found );
|
|
|
|
if ( !found )
|
|
{
|
|
if ( !( found = (AI_alert_occurrence*) malloc ( sizeof ( AI_alert_occurrence ))))
|
|
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
|
|
|
found->key = key;
|
|
found->count = 1;
|
|
HASH_ADD ( hh, table, key, sizeof ( AI_hyperalert_key ), found );
|
|
} else {
|
|
found->count++;
|
|
}
|
|
}
|
|
|
|
for ( found = table; found; found = (AI_alert_occurrence*) found->hh.next )
|
|
distinct_count++;
|
|
|
|
if ( *alert_count > 0 )
|
|
heterogeneity = (double) distinct_count / (double) *alert_count;
|
|
else
|
|
heterogeneity = 0.0;
|
|
|
|
while ( table )
|
|
{
|
|
found = table;
|
|
HASH_DEL ( table, found );
|
|
free ( found );
|
|
}
|
|
|
|
return heterogeneity;
|
|
} /* ----- end of function __AI_get_alerts_heterogeneity ----- */
|
|
|
|
/**
|
|
* \brief Print the clustered alerts to a log file
|
|
* \param log Log containing the alerts
|
|
* \param fp File pointer where the alerts will be printed
|
|
*/
|
|
|
|
PRIVATE void
|
|
__AI_print_clustered_alerts ( AI_snort_alert *log, FILE *fp )
|
|
{
|
|
AI_snort_alert *tmp;
|
|
char ip[INET_ADDRSTRLEN];
|
|
char *timestamp;
|
|
|
|
for ( tmp = log; tmp; tmp = tmp->next )
|
|
{
|
|
fprintf ( fp, "[**] [%d:%d:%d] %s [**]\n", tmp->gid, tmp->sid, tmp->rev, tmp->desc );
|
|
|
|
if ( tmp->classification )
|
|
fprintf ( fp, "[Classification: %s] ", tmp->classification );
|
|
|
|
fprintf ( fp, "[Priority: %d]\n", tmp->priority );
|
|
|
|
timestamp = ctime ( &( tmp->timestamp ));
|
|
timestamp [ strlen ( timestamp ) - 1 ] = 0;
|
|
fprintf ( fp, "[Grouped alerts: %d] [Starting from: %s]\n", tmp->grouped_alerts_count, timestamp );
|
|
|
|
if ( h_root[src_addr] && tmp->h_node[src_addr] )
|
|
{
|
|
fprintf ( fp, "[%s]:", (tmp->h_node[src_addr]->label) ? tmp->h_node[src_addr]->label : "no label" );
|
|
} else {
|
|
inet_ntop ( AF_INET, &(tmp->ip_src_addr), ip, INET_ADDRSTRLEN );
|
|
fprintf ( fp, "%s:", ip );
|
|
}
|
|
|
|
if ( h_root[src_port] && tmp->h_node[src_port] )
|
|
{
|
|
fprintf ( fp, "[%s] -> ", (tmp->h_node[src_port]->label) ? tmp->h_node[src_port]->label : "no label" );
|
|
} else {
|
|
fprintf ( fp, "%d -> ", htons ( tmp->tcp_src_port ));
|
|
}
|
|
|
|
if ( h_root[dst_addr] && tmp->h_node[dst_addr] )
|
|
{
|
|
fprintf ( fp, "[%s]:", (tmp->h_node[dst_addr]->label) ? tmp->h_node[dst_addr]->label : "no label" );
|
|
} else {
|
|
inet_ntop ( AF_INET, &(tmp->ip_dst_addr), ip, INET_ADDRSTRLEN );
|
|
fprintf ( fp, "%s:", ip );
|
|
}
|
|
|
|
if ( h_root[dst_port] && tmp->h_node[dst_port] )
|
|
{
|
|
fprintf ( fp, "[%s]\n", (tmp->h_node[dst_port]->label) ? tmp->h_node[dst_port]->label : "no label" );
|
|
} else {
|
|
fprintf ( fp, "%d\n", htons ( tmp->tcp_dst_port ));
|
|
}
|
|
|
|
fprintf ( fp, "\n" );
|
|
}
|
|
} /* ----- end of function __AI_print_clustered_alerts ----- */
|
|
|
|
|
|
/**
|
|
* \brief Thread for periodically clustering the log information
|
|
*/
|
|
PRIVATE void*
|
|
__AI_cluster_thread ( void* arg )
|
|
{
|
|
AI_snort_alert *tmp;
|
|
hierarchy_node *node, *child;
|
|
cluster_type type;
|
|
cluster_type best_type;
|
|
FILE *cluster_fp;
|
|
char label[256];
|
|
int hostval;
|
|
int netval;
|
|
int minval;
|
|
int heuristic_val;
|
|
int cluster_min_size = 1;
|
|
int alert_count = 0;
|
|
int old_alert_count = 0;
|
|
int single_alerts_count = 0;
|
|
double heterogeneity = 0;
|
|
|
|
pthread_mutex_init ( &mutex, NULL );
|
|
|
|
while ( 1 )
|
|
{
|
|
/* Between an execution of the thread and the next one, sleep for alert_clustering_interval seconds */
|
|
sleep ( config->alertClusteringInterval );
|
|
|
|
/* Set the lock over the alert log until it's done with the clustering operation */
|
|
pthread_mutex_lock ( &mutex );
|
|
|
|
/* Free the current alert log and get the latest one */
|
|
if ( alert_log )
|
|
{
|
|
AI_free_alerts ( alert_log );
|
|
alert_log = NULL;
|
|
}
|
|
|
|
/* get_alerts() is a function pointer that can point to the function for getting the alerts from
|
|
* the plain alert log file or from the database. Calling it the source of the alerts is
|
|
* completely transparent to this level */
|
|
if ( !( alert_log = get_alerts() ))
|
|
{
|
|
pthread_mutex_unlock ( &mutex );
|
|
continue;
|
|
}
|
|
|
|
for ( tmp = alert_log, alert_count=0; tmp; tmp = tmp->next, alert_count++ )
|
|
{
|
|
/* If an alert has an unitialized "grouped alarms count", set its counter to 1 (it only groupes the current alert) */
|
|
if ( tmp->grouped_alerts_count == 0 )
|
|
{
|
|
tmp->grouped_alerts_count = 1;
|
|
}
|
|
|
|
/* Initialize the clustering hierarchies in the current alert */
|
|
for ( type=0; type < CLUSTER_TYPES; type++ )
|
|
{
|
|
/* If "type" is a valid clustering hierarchy but the corresponding node in the alert is not initialized, initialize it */
|
|
if ( h_root[type] && !tmp->h_node[type] )
|
|
{
|
|
switch ( type )
|
|
{
|
|
case src_addr:
|
|
case dst_addr:
|
|
netval = ( type == src_addr ) ? tmp->ip_src_addr : tmp->ip_dst_addr;
|
|
hostval = ntohl ( netval );
|
|
inet_ntop ( AF_INET, &(netval), label, INET_ADDRSTRLEN );
|
|
break;
|
|
|
|
case src_port:
|
|
case dst_port:
|
|
netval = ( type == src_port ) ? tmp->tcp_src_port : tmp->tcp_dst_port;
|
|
hostval = ntohs ( netval );
|
|
snprintf ( label, sizeof(label), "%d", hostval );
|
|
break;
|
|
|
|
default:
|
|
pthread_exit (( void* ) 0 );
|
|
return (void*) 0;
|
|
}
|
|
|
|
node = __AI_get_min_hierarchy_node ( hostval, h_root[type] );
|
|
|
|
if ( node )
|
|
{
|
|
if ( node->min_val < node->max_val )
|
|
{
|
|
child = __AI_hierarchy_node_new ( label, hostval, hostval);
|
|
__AI_hierarchy_node_append ( node, child );
|
|
node = child;
|
|
}
|
|
|
|
tmp->h_node[type] = node;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
alert_count -= __AI_merge_alerts ( &alert_log );
|
|
heterogeneity = __AI_get_alerts_heterogeneity ( &single_alerts_count );
|
|
|
|
/* Get the minimum size for the clusters in function of the heterogeneity of alerts' set */
|
|
if ( heterogeneity > 0 )
|
|
cluster_min_size = (int) round ( 1/heterogeneity );
|
|
else
|
|
cluster_min_size = 1;
|
|
|
|
do
|
|
{
|
|
old_alert_count = alert_count;
|
|
minval = INT_MAX;
|
|
best_type = none;
|
|
|
|
/* Choose the best attribute to cluster using the heuristic function */
|
|
for ( type = 0; type < CLUSTER_TYPES; type++ )
|
|
{
|
|
if ( type != none && h_root[type] )
|
|
{
|
|
if (( heuristic_val = __AI_heuristic_func ( type )) > 0 && heuristic_val < minval )
|
|
{
|
|
minval = heuristic_val;
|
|
best_type = type;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* For all the alerts, the corresponing clustering value is the parent of the current one in the hierarchy */
|
|
for ( tmp = alert_log; tmp; tmp = tmp->next )
|
|
{
|
|
if ( tmp->grouped_alerts_count < cluster_min_size && tmp->h_node[best_type] )
|
|
{
|
|
if ( tmp->h_node[best_type]->parent )
|
|
{
|
|
tmp->h_node[best_type] = tmp->h_node[best_type]->parent;
|
|
}
|
|
}
|
|
}
|
|
|
|
alert_count -= __AI_merge_alerts ( &alert_log );
|
|
} while ( old_alert_count != alert_count );
|
|
|
|
pthread_mutex_unlock ( &mutex );
|
|
|
|
if ( !( cluster_fp = fopen ( config->clusterfile, "w" )) )
|
|
{
|
|
pthread_exit ((void*) 0 );
|
|
return (void*) 0;
|
|
}
|
|
|
|
__AI_print_clustered_alerts ( alert_log, cluster_fp );
|
|
fclose ( cluster_fp );
|
|
}
|
|
|
|
pthread_exit ((void*) 0 );
|
|
return (void*) 0;
|
|
} /* ----- end of function AI_cluster_thread ----- */
|
|
|
|
|
|
/**
|
|
* \brief Check if a certain node's range (minimum and maximum value) are already present in a clustering hierarchy
|
|
* \param node Node to be checked
|
|
* \param root Clustering hierarchy
|
|
* \return True if 'node' is already in 'root', false otherwise
|
|
*/
|
|
|
|
PRIVATE bool
|
|
__AI_check_duplicate ( hierarchy_node *node, hierarchy_node *root )
|
|
{
|
|
int i;
|
|
|
|
if ( !node || !root )
|
|
return false;
|
|
|
|
if ( root->min_val == node->min_val && root->max_val == node->max_val )
|
|
return true;
|
|
|
|
for ( i=0; i < root->nchildren; i++ )
|
|
{
|
|
if ( __AI_check_duplicate ( node, root->children[i] ))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
} /* ----- end of function _AI_check_duplicate ----- */
|
|
|
|
|
|
/**
|
|
* \brief Build the clustering hierarchy trees
|
|
* \param nodes Nodes containing the information about the clustering ranges
|
|
* \param n_nodes Number of nodes
|
|
*/
|
|
|
|
void
|
|
AI_hierarchies_build ( hierarchy_node **nodes, int n_nodes )
|
|
{
|
|
int i, j;
|
|
int min_range = 0;
|
|
pthread_t cluster_thread;
|
|
hierarchy_node *root = NULL;
|
|
hierarchy_node *cover = NULL;
|
|
|
|
for ( i=0; i < n_nodes; i++ )
|
|
{
|
|
switch ( nodes[i]->type )
|
|
{
|
|
case src_port:
|
|
case dst_port:
|
|
if ( !h_root[ nodes[i]->type ] )
|
|
h_root[ nodes[i]->type ] = __AI_hierarchy_node_new ( "1-65535", 1, 65535 );
|
|
|
|
min_range = 65534;
|
|
break;
|
|
|
|
case src_addr:
|
|
case dst_addr:
|
|
if ( !h_root[ nodes[i]->type ] )
|
|
h_root[ nodes[i]->type ] = __AI_hierarchy_node_new ( "0.0.0.0/0", 0x0, 0xffffffff );
|
|
|
|
min_range = 0xffffffff;
|
|
break;
|
|
|
|
/* TODO Manage ranges for timestamps (and something more?) */
|
|
default:
|
|
return;
|
|
}
|
|
|
|
root = h_root[ nodes[i]->type ];
|
|
cover = NULL;
|
|
|
|
if ( __AI_check_duplicate ( nodes[i], root ))
|
|
{
|
|
AI_fatal_err ( "Parse error: duplicate cluster range in module configuration", __FILE__, __LINE__ );
|
|
}
|
|
|
|
for ( j=0; j < n_nodes; j++ )
|
|
{
|
|
if ( i != j )
|
|
{
|
|
if ( (unsigned) nodes[j]->min_val <= (unsigned) nodes[i]->min_val &&
|
|
(unsigned) nodes[j]->max_val >= (unsigned) nodes[i]->max_val )
|
|
{
|
|
if (( (unsigned) nodes[i]->min_val - (unsigned) nodes[j]->min_val +
|
|
(unsigned) nodes[j]->max_val - (unsigned) nodes[i]->max_val ) <= min_range )
|
|
{
|
|
cover = nodes[j];
|
|
min_range = nodes[i]->min_val - nodes[j]->min_val +
|
|
nodes[j]->max_val - nodes[i]->max_val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( cover )
|
|
{
|
|
__AI_hierarchy_node_append ( cover, nodes[i] );
|
|
} else {
|
|
if ( (unsigned) nodes[i]->min_val >= (unsigned) root->min_val && (unsigned) nodes[i]->max_val <= (unsigned) root->max_val &&
|
|
( (unsigned) nodes[i]->min_val != (unsigned) root->min_val || (unsigned) nodes[i]->max_val != (unsigned) root->max_val ))
|
|
{
|
|
__AI_hierarchy_node_append ( root, nodes[i] );
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( pthread_create ( &cluster_thread, NULL, __AI_cluster_thread, NULL ) != 0 )
|
|
{
|
|
AI_fatal_err ( "Failed to create the hash cleanup thread", __FILE__, __LINE__ );
|
|
}
|
|
} /* ----- end of function AI_hierarchies_build ----- */
|
|
|
|
|
|
/**
|
|
* \brief Return a copy of the clustered alerts
|
|
* \return An AI_snort_alert pointer identifying the list of clustered alerts
|
|
*/
|
|
|
|
PRIVATE AI_snort_alert*
|
|
__AI_copy_clustered_alerts ( AI_snort_alert *node )
|
|
{
|
|
AI_snort_alert *current = NULL, *next = NULL;
|
|
|
|
if ( !node )
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
if ( node->next )
|
|
{
|
|
next = __AI_copy_clustered_alerts ( node->next );
|
|
}
|
|
|
|
if ( !( current = ( AI_snort_alert* ) malloc ( sizeof ( AI_snort_alert )) ))
|
|
{
|
|
AI_fatal_err ( "Fatal dynamic memory allocation failure", __FILE__, __LINE__ );
|
|
}
|
|
|
|
memcpy ( current, node, sizeof ( AI_snort_alert ));
|
|
current->next = next;
|
|
return current;
|
|
} /* ----- end of function __AI_copy_clustered_alerts ----- */
|
|
|
|
|
|
/**
|
|
* \brief Return the alerts parsed so far as a linked list
|
|
* \return An AI_snort_alert pointer identifying the list of clustered alerts
|
|
*/
|
|
|
|
AI_snort_alert*
|
|
AI_get_clustered_alerts ()
|
|
{
|
|
AI_snort_alert *alerts_copy = NULL;
|
|
|
|
pthread_mutex_lock ( &mutex );
|
|
alerts_copy = __AI_copy_clustered_alerts ( alert_log );
|
|
pthread_mutex_unlock ( &mutex );
|
|
|
|
return alerts_copy;
|
|
} /* ----- end of function AI_get_clustered_alerts ----- */
|
|
|
|
/** @} */
|