Snort_AIPreproc/neural.c

505 lines
15 KiB
C
Executable file

/*
* =====================================================================================
*
* Filename: neural.c
*
* Description: Manage the alert correlation based on SOM neural network
*
* Version: 0.1
* Created: 21/10/2010 08:51:28
* Revision: none
* Compiler: gcc
*
* Author: BlackLight (http://0x00.ath.cx), <blacklight@autistici.org>
* Licence: GNU GPL v.3
* Company: DO WHAT YOU WANT CAUSE A PIRATE IS FREE, YOU ARE A PIRATE!
*
* =====================================================================================
*/
#include "spp_ai.h"
/** \defgroup neural Module for the neural network-based alert correlation
* @{ */
#ifdef HAVE_DB
#include "db.h"
#include "fsom.h"
#include <alloca.h>
#include <limits.h>
#include <math.h>
#include <sys/stat.h>
#include <time.h>
#include <unistd.h>
/** Enumeration for the input fields of the SOM neural network */
enum { som_src_ip, som_dst_ip, som_src_port, som_dst_port, som_time, som_gid, som_sid, som_rev, SOM_NUM_ITEMS };
PRIVATE time_t latest_serialization_time = ( time_t ) 0;
PRIVATE som_network_t *net = NULL;
PRIVATE AI_alerts_per_neuron *alerts_per_neuron = NULL;
PRIVATE pthread_mutex_t neural_mutex;
/**
* \brief Get the hash table containing the alerts associated to each output neuron
* \return The hash table
*/
AI_alerts_per_neuron*
AI_get_alerts_per_neuron ()
{
return alerts_per_neuron;
} /* ----- end of function AI_get_alerts_per_neuron ----- */
/**
* \brief Get the current weight of the neural correlation index using a hyperbolic tangent function with a parameter expressed in function of the current number of alerts in the database
* \return The weight of the correlation index ( 0 <= weight < 1 )
*/
double
AI_neural_correlation_weight ()
{
DB_result res;
DB_row row;
char query[1024] = { 0 };
double x = 0,
k = (double) config->alert_correlation_weight / HYPERBOLIC_TANGENT_SOLUTION;
pthread_mutex_lock ( &outdb_mutex );
if ( !DB_out_init() )
{
pthread_mutex_unlock ( &outdb_mutex );
AI_fatal_err ( "Unable to connect to the database specified in module configuration", __FILE__, __LINE__ );
}
pthread_mutex_unlock ( &outdb_mutex );
snprintf ( query, sizeof ( query ), "SELECT count(*) FROM %s", outdb_config[ALERTS_TABLE] );
pthread_mutex_lock ( &outdb_mutex );
if ( !( res = (DB_result) DB_out_query ( query )))
{
_dpd.errMsg ( "Warning: Database error while executing the query '%s'\n", query );
pthread_mutex_unlock ( &outdb_mutex );
return 0.0;
}
pthread_mutex_unlock ( &outdb_mutex );
row = (DB_row) DB_fetch_row ( res );
x = strtod ( row[0], NULL );
DB_free_result ( res );
return (( exp(x/k) - exp(-x/k) ) / ( exp(x/k) + exp(-x/k) ));
} /* ----- end of function AI_neural_correlation_weight ----- */
/**
* \brief Convert an alert row fetched from db to a vector suitable for being elaborated by the SOM neural network
* \param alert AI_som_alert_tuple object identifying the alert tuple
* \param data Reference to the vector that will contain the SOM data
*/
PRIVATE void
__AI_alert_to_som_data ( const AI_som_alert_tuple alert, double **input )
{
(*input)[som_gid] = (double) alert.gid / (double) USHRT_MAX;
(*input)[som_sid] = (double) alert.sid / (double) USHRT_MAX;
(*input)[som_rev] = (double) alert.rev / (double) USHRT_MAX;
(*input)[som_time] = (double) alert.timestamp / (double) INT_MAX;
(*input)[som_src_ip] = (double) alert.src_ip_addr / (double) UINT_MAX;
(*input)[som_dst_ip] = (double) alert.dst_ip_addr / (double) UINT_MAX;
(*input)[som_src_port] = (double) alert.src_port / (double) USHRT_MAX;
(*input)[som_dst_port] = (double) alert.dst_port / (double) USHRT_MAX;
} /* ----- end of function __AI_alert_to_som_data ----- */
/**
* \brief Get the distance between two alerts mapped on the SOM neural network
* \param alert1 Tuple identifying the first alert
* \param alert2 Tuple identifying the second alert
* \return The distance between the alerts
*/
PRIVATE double
__AI_som_alert_distance ( const AI_som_alert_tuple alert1, const AI_som_alert_tuple alert2 )
{
double *input1 = NULL,
*input2 = NULL;
size_t x1 = 0,
y1 = 0,
x2 = 0,
y2 = 0;
int i;
bool is_found = false;
AI_alerts_per_neuron *found = NULL;
AI_alerts_per_neuron_key key;
if ( !( input1 = (double*) alloca ( SOM_NUM_ITEMS * sizeof ( double ))))
{
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
}
if ( !( input2 = (double*) alloca ( SOM_NUM_ITEMS * sizeof ( double ))))
{
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
}
if ( !net )
{
return 0.0;
}
__AI_alert_to_som_data ( alert1, &input1 );
__AI_alert_to_som_data ( alert2, &input2 );
pthread_mutex_lock ( &neural_mutex );
som_set_inputs ( net, input1 );
som_get_best_neuron_coordinates ( net, &x1, &y1 );
som_set_inputs ( net, input2 );
som_get_best_neuron_coordinates ( net, &x2, &y2 );
pthread_mutex_unlock ( &neural_mutex );
/* Check if there are already entries in the hash table for these two neurons, otherwise
* it creates them and append these two alerts */
key.x = x1;
key.y = y1;
HASH_FIND ( hh, alerts_per_neuron, &key, sizeof ( key ), found );
if ( !found )
{
if ( !( found = (AI_alerts_per_neuron*) calloc ( 1, sizeof ( AI_alerts_per_neuron ))))
{
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
}
found->key = key;
found->n_alerts = 1;
if ( !( found->alerts = (AI_som_alert_tuple*) calloc ( 1, sizeof ( AI_som_alert_tuple ))))
{
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
}
found->alerts[0] = alert1;
HASH_ADD ( hh, alerts_per_neuron, key, sizeof ( key ), found );
} else {
is_found = false;
for ( i=0; i < found->n_alerts && !is_found; i++ )
{
if (
alert1.gid == found->alerts[i].gid &&
alert1.sid == found->alerts[i].sid &&
alert1.rev == found->alerts[i].rev &&
alert1.src_ip_addr == found->alerts[i].src_ip_addr &&
alert1.dst_ip_addr == found->alerts[i].dst_ip_addr &&
alert1.src_port == found->alerts[i].src_port &&
alert1.dst_port == found->alerts[i].dst_port )
{
is_found = true;
}
}
if ( !is_found )
{
if ( !( found->alerts = (AI_som_alert_tuple*) realloc ( found->alerts,
(++(found->n_alerts)) * sizeof ( AI_som_alert_tuple ))))
{
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
}
found->alerts[ found->n_alerts - 1 ] = alert1;
}
}
key.x = x2;
key.y = y2;
HASH_FIND ( hh, alerts_per_neuron, &key, sizeof ( key ), found );
if ( !found )
{
if ( !( found = (AI_alerts_per_neuron*) calloc ( 1, sizeof ( AI_alerts_per_neuron ))))
{
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
}
found->key = key;
found->n_alerts = 1;
if ( !( found->alerts = (AI_som_alert_tuple*) calloc ( 1, sizeof ( AI_som_alert_tuple ))))
{
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
}
found->alerts[0] = alert2;
HASH_ADD ( hh, alerts_per_neuron, key, sizeof ( key ), found );
} else {
is_found = false;
for ( i=0; i < found->n_alerts && !is_found; i++ )
{
if (
alert2.gid == found->alerts[i].gid &&
alert2.sid == found->alerts[i].sid &&
alert2.rev == found->alerts[i].rev &&
alert2.src_ip_addr == found->alerts[i].src_ip_addr &&
alert2.dst_ip_addr == found->alerts[i].dst_ip_addr &&
alert2.src_port == found->alerts[i].src_port &&
alert2.dst_port == found->alerts[i].dst_port )
{
is_found = true;
}
}
if ( !is_found )
{
if ( !( found->alerts = (AI_som_alert_tuple*) realloc ( found->alerts,
(++(found->n_alerts)) * sizeof ( AI_som_alert_tuple ))))
{
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
}
found->alerts[ found->n_alerts - 1 ] = alert2;
}
}
/* Return the normalized euclidean distance in [0,1] (the normalization is made considering that the maximum distance
* between two points on the output neurons matrix is the distance between the upper-left and bottom-right points) */
/* return sqrt ((double) ( (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) )) / */
/* sqrt ((double) ( 2 * (config->outputNeuronsPerSide-1) * (config->outputNeuronsPerSide-1) )); */
return sqrt ((double) ( (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) ));
} /* ----- end of function __AI_som_alert_distance ----- */
/**
* \brief Get the SOM neural correlation between two alerts given as AI_snort_alert objects
* \param a First alert
* \param b Second alert
* \return The correlation between a and b computed by the neural network
*/
double
AI_alert_neural_som_correlation ( const AI_snort_alert *a, const AI_snort_alert *b )
{
AI_som_alert_tuple t1, t2;
double distance = 0.0,
max_distance = 0.0;
t1.gid = a->gid;
t1.sid = a->sid;
t1.rev = a->rev;
t1.src_ip_addr = ntohl ( a->ip_src_addr );
t1.dst_ip_addr = ntohl ( a->ip_dst_addr );
t1.src_port = ntohs ( a->tcp_src_port );
t1.dst_port = ntohs ( a->tcp_dst_port );
t1.timestamp = a->timestamp;
t1.desc = a->desc;
t2.gid = b->gid;
t2.sid = b->sid;
t2.rev = b->rev;
t2.src_ip_addr = ntohl ( b->ip_src_addr );
t2.dst_ip_addr = ntohl ( b->ip_dst_addr );
t2.src_port = ntohs ( b->tcp_src_port );
t2.dst_port = ntohs ( b->tcp_dst_port );
t2.timestamp = b->timestamp;
t2.desc = b->desc;
distance = __AI_som_alert_distance ( t1, t2 );
max_distance = sqrt ((double) ( 2 * (config->outputNeuronsPerSide-1) * (config->outputNeuronsPerSide-1) ));
return (( distance == max_distance ) ? 0.0 : ( 1.0 / ( 1.0 + distance )));
} /* ----- end of function AI_alert_neural_som_correlation ----- */
/**
* \brief Train the neural network taking the alerts from the latest serialization time
*/
PRIVATE void
__AI_som_train ()
{
double **inputs = NULL;
char query[1024] = { 0 };
size_t i = 0,
num_rows = 0;
DB_result res;
DB_row row;
AI_som_alert_tuple *tuples = NULL;
pthread_mutex_lock ( &outdb_mutex );
if ( !DB_out_init() )
{
pthread_mutex_unlock ( &outdb_mutex );
AI_fatal_err ( "Unable to connect to the database specified in module configuration", __FILE__, __LINE__ );
}
pthread_mutex_unlock ( &outdb_mutex );
#ifdef HAVE_LIBMYSQLCLIENT
snprintf ( query, sizeof ( query ),
"SELECT gid, sid, rev, unix_timestamp(timestamp), ip_src_addr, ip_dst_addr, tcp_src_port, tcp_dst_port "
"FROM (%s a LEFT JOIN %s ip ON a.ip_hdr=ip.ip_hdr_id) LEFT JOIN %s tcp "
"ON a.tcp_hdr=tcp.tcp_hdr_id "
"WHERE unix_timestamp(timestamp) >= %lu",
outdb_config[ALERTS_TABLE], outdb_config[IPV4_HEADERS_TABLE], outdb_config[TCP_HEADERS_TABLE],
latest_serialization_time
);
#elif HAVE_LIBPQ
snprintf ( query, sizeof ( query ),
"SELECT gid, sid, rev, date_part('epoch', \"timestamp\"(timestamp)), ip_src_addr, ip_dst_addr, tcp_src_port, tcp_dst_port "
"FROM (%s a LEFT JOIN %s ip ON a.ip_hdr=ip.ip_hdr_id) LEFT JOIN %s tcp "
"ON a.tcp_hdr=tcp.tcp_hdr_id "
"WHERE date_part ('epoch', \"timestamp\"(timestamp)) >= %lu",
outdb_config[ALERTS_TABLE], outdb_config[IPV4_HEADERS_TABLE], outdb_config[TCP_HEADERS_TABLE],
latest_serialization_time
);
#endif
pthread_mutex_lock ( &outdb_mutex );
if ( !( res = (DB_result) DB_out_query ( query )))
{
_dpd.errMsg ( "Warning: Database error while executing the query '%s'\n", query );
pthread_mutex_unlock ( &outdb_mutex );
return;
}
pthread_mutex_unlock ( &outdb_mutex );
num_rows = DB_num_rows ( res );
if ( num_rows == 0 )
{
DB_free_result ( res );
latest_serialization_time = time ( NULL );
return;
}
if ( !( inputs = (double**) alloca ( num_rows * sizeof ( double* ))))
{
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
}
if ( !( tuples = (AI_som_alert_tuple*) alloca ( num_rows * sizeof ( AI_som_alert_tuple ))))
{
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
}
for ( i=0; i < num_rows; i++ )
{
row = (DB_row) DB_fetch_row ( res );
tuples[i].gid = row[0] ? strtoul ( row[0], NULL, 10 ) : 0;
tuples[i].sid = row[1] ? strtoul ( row[1], NULL, 10 ) : 0;
tuples[i].rev = row[2] ? strtoul ( row[2], NULL, 10 ) : 0;
tuples[i].timestamp = row[3] ? (time_t) strtol ( row[3], NULL, 10 ) : (time_t) 0;
tuples[i].src_ip_addr = row[4] ? ntohl ( inet_addr ( row[4] )) : 0;
tuples[i].dst_ip_addr = row[5] ? ntohl ( inet_addr ( row[5] )) : 0;
tuples[i].src_port = row[6] ? (uint16_t) strtoul ( row[6], NULL, 10 ) : 0;
tuples[i].dst_port = row[7] ? (uint16_t) strtoul ( row[7], NULL, 10 ) : 0;
if ( !( inputs[i] = (double*) alloca ( SOM_NUM_ITEMS * sizeof ( double ))))
{
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
}
__AI_alert_to_som_data ( tuples[i], &inputs[i] );
}
DB_free_result ( res );
pthread_mutex_lock ( &neural_mutex );
if ( !net )
{
if ( !( net = som_network_new ( SOM_NUM_ITEMS, config->outputNeuronsPerSide, config->outputNeuronsPerSide )))
{
pthread_mutex_unlock ( &neural_mutex );
AI_fatal_err ( "AIPreproc: Could not create the neural network", __FILE__, __LINE__ );
}
som_init_weights ( net, inputs, num_rows );
som_train ( net, inputs, num_rows, config->neural_train_steps );
} else {
som_train ( net, inputs, num_rows, config->neural_train_steps );
}
pthread_mutex_unlock ( &neural_mutex );
latest_serialization_time = time ( NULL );
net->serialization_time = latest_serialization_time;
som_serialize ( net, config->netfile );
} /* ----- end of function __AI_som_train ----- */
/**
* \brief Thread for managing the self-organazing map (SOM) neural network for the alert correlation
*/
void*
AI_neural_thread ( void *arg )
{
struct stat st;
bool do_train = false;
pthread_t neural_clustering_thread;
pthread_mutex_init ( &neural_mutex, NULL );
if ( !config->netfile )
{
AI_fatal_err ( "AIPreproc: neural network thread launched but netfile option was not specified", __FILE__, __LINE__ );
}
if ( strlen ( config->netfile ) == 0 )
{
AI_fatal_err ( "AIPreproc: neural network thread launched but netfile option was not specified", __FILE__, __LINE__ );
}
if ( config->neuralClusteringInterval != 0 )
{
if ( pthread_create ( &neural_clustering_thread, NULL, AI_neural_clustering_thread, NULL ) != 0 )
{
AI_fatal_err ( "Failed to create the manual correlations parsing thread", __FILE__, __LINE__ );
}
}
while ( 1 )
{
if ( stat ( config->netfile, &st ) < 0 )
{
do_train = true;
} else {
if ( !( net = som_deserialize ( config->netfile )))
{
AI_fatal_err ( "AIPreproc: Error in deserializing the neural network from the network file", __FILE__, __LINE__ );
}
/* If more than N seconds passed from the latest serialization, re-train the neural network */
if ( (int) ( time (NULL) - net->serialization_time ) > config->neuralNetworkTrainingInterval )
{
do_train = true;
}
}
if ( do_train )
{
__AI_som_train();
}
sleep ( config->neuralNetworkTrainingInterval );
}
pthread_exit ((void*) 0);
return (void*) 0;
} /* ----- end of function AI_neural_thread ----- */
#endif
/** @} */