mirror of
https://github.com/BlackLight/Snort_AIPreproc.git
synced 2024-11-14 04:37:16 +01:00
500 lines
15 KiB
C
500 lines
15 KiB
C
/*
|
|
* =====================================================================================
|
|
*
|
|
* Filename: neural.c
|
|
*
|
|
* Description: Manage the alert correlation based on SOM neural network
|
|
*
|
|
* Version: 0.1
|
|
* Created: 21/10/2010 08:51:28
|
|
* Revision: none
|
|
* Compiler: gcc
|
|
*
|
|
* Author: BlackLight (http://0x00.ath.cx), <blacklight@autistici.org>
|
|
* Licence: GNU GPL v.3
|
|
* Company: DO WHAT YOU WANT CAUSE A PIRATE IS FREE, YOU ARE A PIRATE!
|
|
*
|
|
* =====================================================================================
|
|
*/
|
|
|
|
#include "spp_ai.h"
|
|
|
|
/** \defgroup neural Module for the neural network-based alert correlation
|
|
* @{ */
|
|
|
|
#ifdef HAVE_DB
|
|
|
|
#include "db.h"
|
|
#include "fsom.h"
|
|
|
|
#include <alloca.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <sys/stat.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
/** Enumeration for the input fields of the SOM neural network */
|
|
enum { som_src_ip, som_dst_ip, som_src_port, som_dst_port, som_time, som_gid, som_sid, som_rev, SOM_NUM_ITEMS };
|
|
|
|
PRIVATE time_t latest_serialization_time = ( time_t ) 0;
|
|
PRIVATE som_network_t *net = NULL;
|
|
PRIVATE AI_alerts_per_neuron *alerts_per_neuron = NULL;
|
|
PRIVATE pthread_mutex_t neural_mutex;
|
|
|
|
/**
|
|
* \brief Get the hash table containing the alerts associated to each output neuron
|
|
* \return The hash table
|
|
*/
|
|
|
|
AI_alerts_per_neuron*
|
|
AI_get_alerts_per_neuron ()
|
|
{
|
|
return alerts_per_neuron;
|
|
} /* ----- end of function AI_get_alerts_per_neuron ----- */
|
|
|
|
/**
|
|
* \brief Get the current weight of the neural correlation index using a hyperbolic tangent function with a parameter expressed in function of the current number of alerts in the database
|
|
* \return The weight of the correlation index ( 0 <= weight < 1 )
|
|
*/
|
|
|
|
double
|
|
AI_neural_correlation_weight ()
|
|
{
|
|
DB_result res;
|
|
DB_row row;
|
|
char query[1024] = { 0 };
|
|
double x = 0,
|
|
k = (double) config->alert_correlation_weight / HYPERBOLIC_TANGENT_SOLUTION;
|
|
|
|
pthread_mutex_lock ( &outdb_mutex );
|
|
|
|
if ( !DB_out_init() )
|
|
{
|
|
pthread_mutex_unlock ( &outdb_mutex );
|
|
AI_fatal_err ( "Unable to connect to the database specified in module configuration", __FILE__, __LINE__ );
|
|
}
|
|
|
|
pthread_mutex_unlock ( &outdb_mutex );
|
|
|
|
snprintf ( query, sizeof ( query ), "SELECT count(*) FROM %s", outdb_config[ALERTS_TABLE] );
|
|
pthread_mutex_lock ( &outdb_mutex );
|
|
|
|
if ( !( res = (DB_result) DB_out_query ( query )))
|
|
{
|
|
_dpd.errMsg ( "Warning: Database error while executing the query '%s'\n", query );
|
|
pthread_mutex_unlock ( &outdb_mutex );
|
|
return 0.0;
|
|
}
|
|
|
|
pthread_mutex_unlock ( &outdb_mutex );
|
|
|
|
row = (DB_row) DB_fetch_row ( res );
|
|
x = strtod ( row[0], NULL );
|
|
DB_free_result ( res );
|
|
|
|
return (( exp(x/k) - exp(-x/k) ) / ( exp(x/k) + exp(-x/k) ));
|
|
} /* ----- end of function AI_neural_correlation_weight ----- */
|
|
|
|
/**
|
|
* \brief Convert an alert row fetched from db to a vector suitable for being elaborated by the SOM neural network
|
|
* \param alert AI_som_alert_tuple object identifying the alert tuple
|
|
* \param data Reference to the vector that will contain the SOM data
|
|
*/
|
|
|
|
PRIVATE void
|
|
__AI_alert_to_som_data ( const AI_som_alert_tuple alert, double **input )
|
|
{
|
|
(*input)[som_gid] = (double) alert.gid / (double) USHRT_MAX;
|
|
(*input)[som_sid] = (double) alert.sid / (double) USHRT_MAX;
|
|
(*input)[som_rev] = (double) alert.rev / (double) USHRT_MAX;
|
|
(*input)[som_time] = (double) alert.timestamp / (double) INT_MAX;
|
|
(*input)[som_src_ip] = (double) alert.src_ip_addr / (double) UINT_MAX;
|
|
(*input)[som_dst_ip] = (double) alert.dst_ip_addr / (double) UINT_MAX;
|
|
(*input)[som_src_port] = (double) alert.src_port / (double) USHRT_MAX;
|
|
(*input)[som_dst_port] = (double) alert.dst_port / (double) USHRT_MAX;
|
|
} /* ----- end of function __AI_alert_to_som_data ----- */
|
|
|
|
/**
|
|
* \brief Get the distance between two alerts mapped on the SOM neural network
|
|
* \param alert1 Tuple identifying the first alert
|
|
* \param alert2 Tuple identifying the second alert
|
|
* \return The distance between the alerts
|
|
*/
|
|
|
|
PRIVATE double
|
|
__AI_som_alert_distance ( const AI_som_alert_tuple alert1, const AI_som_alert_tuple alert2 )
|
|
{
|
|
double *input1 = NULL,
|
|
*input2 = NULL;
|
|
|
|
size_t x1 = 0,
|
|
y1 = 0,
|
|
x2 = 0,
|
|
y2 = 0;
|
|
|
|
int i;
|
|
BOOL is_found = false;
|
|
AI_alerts_per_neuron *found = NULL;
|
|
AI_alerts_per_neuron_key key;
|
|
|
|
if ( !( input1 = (double*) alloca ( SOM_NUM_ITEMS * sizeof ( double ))))
|
|
{
|
|
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
|
}
|
|
|
|
if ( !( input2 = (double*) alloca ( SOM_NUM_ITEMS * sizeof ( double ))))
|
|
{
|
|
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
|
}
|
|
|
|
if ( !net )
|
|
{
|
|
return 0.0;
|
|
}
|
|
|
|
__AI_alert_to_som_data ( alert1, &input1 );
|
|
__AI_alert_to_som_data ( alert2, &input2 );
|
|
|
|
pthread_mutex_lock ( &neural_mutex );
|
|
|
|
som_set_inputs ( net, input1 );
|
|
som_get_best_neuron_coordinates ( net, &x1, &y1 );
|
|
|
|
som_set_inputs ( net, input2 );
|
|
som_get_best_neuron_coordinates ( net, &x2, &y2 );
|
|
|
|
pthread_mutex_unlock ( &neural_mutex );
|
|
|
|
/* Check if there are already entries in the hash table for these two neurons, otherwise
|
|
* it creates them and append these two alerts */
|
|
key.x = x1;
|
|
key.y = y1;
|
|
HASH_FIND ( hh, alerts_per_neuron, &key, sizeof ( key ), found );
|
|
|
|
if ( !found )
|
|
{
|
|
if ( !( found = (AI_alerts_per_neuron*) calloc ( 1, sizeof ( AI_alerts_per_neuron ))))
|
|
{
|
|
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
|
}
|
|
|
|
found->key = key;
|
|
found->n_alerts = 1;
|
|
|
|
if ( !( found->alerts = (AI_som_alert_tuple*) calloc ( 1, sizeof ( AI_som_alert_tuple ))))
|
|
{
|
|
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
|
}
|
|
|
|
found->alerts[0] = alert1;
|
|
HASH_ADD ( hh, alerts_per_neuron, key, sizeof ( key ), found );
|
|
} else {
|
|
is_found = false;
|
|
|
|
for ( i=0; i < found->n_alerts && !is_found; i++ )
|
|
{
|
|
if (
|
|
alert1.gid == found->alerts[i].gid &&
|
|
alert1.sid == found->alerts[i].sid &&
|
|
alert1.rev == found->alerts[i].rev &&
|
|
alert1.src_ip_addr == found->alerts[i].src_ip_addr &&
|
|
alert1.dst_ip_addr == found->alerts[i].dst_ip_addr &&
|
|
alert1.src_port == found->alerts[i].src_port &&
|
|
alert1.dst_port == found->alerts[i].dst_port )
|
|
{
|
|
is_found = true;
|
|
}
|
|
}
|
|
|
|
if ( !is_found )
|
|
{
|
|
if ( !( found->alerts = (AI_som_alert_tuple*) realloc ( found->alerts,
|
|
(++(found->n_alerts)) * sizeof ( AI_som_alert_tuple ))))
|
|
{
|
|
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
|
}
|
|
|
|
found->alerts[ found->n_alerts - 1 ] = alert1;
|
|
}
|
|
}
|
|
|
|
key.x = x2;
|
|
key.y = y2;
|
|
HASH_FIND ( hh, alerts_per_neuron, &key, sizeof ( key ), found );
|
|
|
|
if ( !found )
|
|
{
|
|
if ( !( found = (AI_alerts_per_neuron*) calloc ( 1, sizeof ( AI_alerts_per_neuron ))))
|
|
{
|
|
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
|
}
|
|
|
|
found->key = key;
|
|
found->n_alerts = 1;
|
|
|
|
if ( !( found->alerts = (AI_som_alert_tuple*) calloc ( 1, sizeof ( AI_som_alert_tuple ))))
|
|
{
|
|
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
|
}
|
|
|
|
found->alerts[0] = alert2;
|
|
HASH_ADD ( hh, alerts_per_neuron, key, sizeof ( key ), found );
|
|
} else {
|
|
is_found = false;
|
|
|
|
for ( i=0; i < found->n_alerts && !is_found; i++ )
|
|
{
|
|
if (
|
|
alert2.gid == found->alerts[i].gid &&
|
|
alert2.sid == found->alerts[i].sid &&
|
|
alert2.rev == found->alerts[i].rev &&
|
|
alert2.src_ip_addr == found->alerts[i].src_ip_addr &&
|
|
alert2.dst_ip_addr == found->alerts[i].dst_ip_addr &&
|
|
alert2.src_port == found->alerts[i].src_port &&
|
|
alert2.dst_port == found->alerts[i].dst_port )
|
|
{
|
|
is_found = true;
|
|
}
|
|
}
|
|
|
|
if ( !is_found )
|
|
{
|
|
if ( !( found->alerts = (AI_som_alert_tuple*) realloc ( found->alerts,
|
|
(++(found->n_alerts)) * sizeof ( AI_som_alert_tuple ))))
|
|
{
|
|
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
|
}
|
|
|
|
found->alerts[ found->n_alerts - 1 ] = alert2;
|
|
}
|
|
}
|
|
|
|
/* Return the normalized euclidean distance in [0,1] (the normalization is made considering that the maximum distance
|
|
* between two points on the output neurons matrix is the distance between the upper-left and bottom-right points) */
|
|
return sqrt ((double) ( (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) )) /
|
|
sqrt ((double) ( 2 * (config->outputNeuronsPerSide-1) * (config->outputNeuronsPerSide-1) ));
|
|
} /* ----- end of function __AI_som_alert_distance ----- */
|
|
|
|
/**
|
|
* \brief Get the SOM neural correlation between two alerts given as AI_snort_alert objects
|
|
* \param a First alert
|
|
* \param b Second alert
|
|
* \return The correlation between a and b computed by the neural network
|
|
*/
|
|
|
|
double
|
|
AI_alert_neural_som_correlation ( const AI_snort_alert *a, const AI_snort_alert *b )
|
|
{
|
|
AI_som_alert_tuple t1, t2;
|
|
|
|
t1.gid = a->gid;
|
|
t1.sid = a->sid;
|
|
t1.rev = a->rev;
|
|
t1.src_ip_addr = ntohl ( a->ip_src_addr );
|
|
t1.dst_ip_addr = ntohl ( a->ip_dst_addr );
|
|
t1.src_port = ntohs ( a->tcp_src_port );
|
|
t1.dst_port = ntohs ( a->tcp_dst_port );
|
|
t1.timestamp = a->timestamp;
|
|
t1.desc = a->desc;
|
|
|
|
t2.gid = b->gid;
|
|
t2.sid = b->sid;
|
|
t2.rev = b->rev;
|
|
t2.src_ip_addr = ntohl ( b->ip_src_addr );
|
|
t2.dst_ip_addr = ntohl ( b->ip_dst_addr );
|
|
t2.src_port = ntohs ( b->tcp_src_port );
|
|
t2.dst_port = ntohs ( b->tcp_dst_port );
|
|
t2.timestamp = b->timestamp;
|
|
t2.desc = b->desc;
|
|
|
|
return __AI_som_alert_distance ( t1, t2 );
|
|
} /* ----- end of function AI_alert_neural_som_correlation ----- */
|
|
|
|
/**
|
|
* \brief Train the neural network taking the alerts from the latest serialization time
|
|
*/
|
|
|
|
PRIVATE void
|
|
__AI_som_train ()
|
|
{
|
|
double **inputs = NULL;
|
|
|
|
char query[1024] = { 0 };
|
|
|
|
size_t i = 0,
|
|
num_rows = 0;
|
|
|
|
DB_result res;
|
|
DB_row row;
|
|
AI_som_alert_tuple *tuples = NULL;
|
|
|
|
pthread_mutex_lock ( &outdb_mutex );
|
|
|
|
if ( !DB_out_init() )
|
|
{
|
|
pthread_mutex_unlock ( &outdb_mutex );
|
|
AI_fatal_err ( "Unable to connect to the database specified in module configuration", __FILE__, __LINE__ );
|
|
}
|
|
|
|
pthread_mutex_unlock ( &outdb_mutex );
|
|
|
|
#ifdef HAVE_LIBMYSQLCLIENT
|
|
snprintf ( query, sizeof ( query ),
|
|
"SELECT gid, sid, rev, unix_timestamp(timestamp), ip_src_addr, ip_dst_addr, tcp_src_port, tcp_dst_port "
|
|
"FROM (%s a LEFT JOIN %s ip ON a.ip_hdr=ip.ip_hdr_id) LEFT JOIN %s tcp "
|
|
"ON a.tcp_hdr=tcp.tcp_hdr_id "
|
|
"WHERE unix_timestamp(timestamp) >= %lu",
|
|
outdb_config[ALERTS_TABLE], outdb_config[IPV4_HEADERS_TABLE], outdb_config[TCP_HEADERS_TABLE],
|
|
latest_serialization_time
|
|
);
|
|
#elif HAVE_LIBPQ
|
|
snprintf ( query, sizeof ( query ),
|
|
"SELECT gid, sid, rev, date_part('epoch', \"timestamp\"(timestamp)), ip_src_addr, ip_dst_addr, tcp_src_port, tcp_dst_port "
|
|
"FROM (%s a LEFT JOIN %s ip ON a.ip_hdr=ip.ip_hdr_id) LEFT JOIN %s tcp "
|
|
"ON a.tcp_hdr=tcp.tcp_hdr_id "
|
|
"WHERE date_part ('epoch', \"timestamp\"(timestamp)) >= %lu",
|
|
outdb_config[ALERTS_TABLE], outdb_config[IPV4_HEADERS_TABLE], outdb_config[TCP_HEADERS_TABLE],
|
|
latest_serialization_time
|
|
);
|
|
#endif
|
|
|
|
pthread_mutex_lock ( &outdb_mutex );
|
|
|
|
if ( !( res = (DB_result) DB_out_query ( query )))
|
|
{
|
|
_dpd.errMsg ( "Warning: Database error while executing the query '%s'\n", query );
|
|
pthread_mutex_unlock ( &outdb_mutex );
|
|
return;
|
|
}
|
|
|
|
pthread_mutex_unlock ( &outdb_mutex );
|
|
num_rows = DB_num_rows ( res );
|
|
|
|
if ( num_rows == 0 )
|
|
{
|
|
DB_free_result ( res );
|
|
latest_serialization_time = time ( NULL );
|
|
return;
|
|
}
|
|
|
|
if ( !( inputs = (double**) alloca ( num_rows * sizeof ( double* ))))
|
|
{
|
|
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
|
}
|
|
|
|
if ( !( tuples = (AI_som_alert_tuple*) alloca ( num_rows * sizeof ( AI_som_alert_tuple ))))
|
|
{
|
|
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
|
}
|
|
|
|
for ( i=0; i < num_rows; i++ )
|
|
{
|
|
row = (DB_row) DB_fetch_row ( res );
|
|
|
|
tuples[i].gid = row[0] ? strtoul ( row[0], NULL, 10 ) : 0;
|
|
tuples[i].sid = row[1] ? strtoul ( row[1], NULL, 10 ) : 0;
|
|
tuples[i].rev = row[2] ? strtoul ( row[2], NULL, 10 ) : 0;
|
|
tuples[i].timestamp = row[3] ? (time_t) strtol ( row[3], NULL, 10 ) : (time_t) 0;
|
|
tuples[i].src_ip_addr = row[4] ? ntohl ( inet_addr ( row[4] )) : 0;
|
|
tuples[i].dst_ip_addr = row[5] ? ntohl ( inet_addr ( row[5] )) : 0;
|
|
tuples[i].src_port = row[6] ? (uint16_t) strtoul ( row[6], NULL, 10 ) : 0;
|
|
tuples[i].dst_port = row[7] ? (uint16_t) strtoul ( row[7], NULL, 10 ) : 0;
|
|
|
|
if ( !( inputs[i] = (double*) alloca ( SOM_NUM_ITEMS * sizeof ( double ))))
|
|
{
|
|
AI_fatal_err ( "Fatal dynamic memory allocation error", __FILE__, __LINE__ );
|
|
}
|
|
|
|
__AI_alert_to_som_data ( tuples[i], &inputs[i] );
|
|
}
|
|
|
|
DB_free_result ( res );
|
|
pthread_mutex_lock ( &neural_mutex );
|
|
|
|
if ( !net )
|
|
{
|
|
if ( !( net = som_network_new ( SOM_NUM_ITEMS, config->outputNeuronsPerSide, config->outputNeuronsPerSide )))
|
|
{
|
|
pthread_mutex_unlock ( &neural_mutex );
|
|
AI_fatal_err ( "AIPreproc: Could not create the neural network", __FILE__, __LINE__ );
|
|
}
|
|
|
|
som_init_weights ( net, inputs, num_rows );
|
|
som_train ( net, inputs, num_rows, config->neural_train_steps );
|
|
} else {
|
|
som_train ( net, inputs, num_rows, config->neural_train_steps );
|
|
}
|
|
|
|
pthread_mutex_unlock ( &neural_mutex );
|
|
|
|
latest_serialization_time = time ( NULL );
|
|
net->serialization_time = latest_serialization_time;
|
|
som_serialize ( net, config->netfile );
|
|
} /* ----- end of function __AI_som_train ----- */
|
|
|
|
/**
|
|
* \brief Thread for managing the self-organazing map (SOM) neural network for the alert correlation
|
|
*/
|
|
|
|
void*
|
|
AI_neural_thread ( void *arg )
|
|
{
|
|
struct stat st;
|
|
BOOL do_train = false;
|
|
pthread_t neural_clustering_thread;
|
|
|
|
pthread_mutex_init ( &neural_mutex, NULL );
|
|
|
|
if ( !config->netfile )
|
|
{
|
|
AI_fatal_err ( "AIPreproc: neural network thread launched but netfile option was not specified", __FILE__, __LINE__ );
|
|
}
|
|
|
|
if ( strlen ( config->netfile ) == 0 )
|
|
{
|
|
AI_fatal_err ( "AIPreproc: neural network thread launched but netfile option was not specified", __FILE__, __LINE__ );
|
|
}
|
|
|
|
if ( config->neuralClusteringInterval != 0 )
|
|
{
|
|
if ( pthread_create ( &neural_clustering_thread, NULL, AI_neural_clustering_thread, NULL ) != 0 )
|
|
{
|
|
AI_fatal_err ( "Failed to create the manual correlations parsing thread", __FILE__, __LINE__ );
|
|
}
|
|
}
|
|
|
|
while ( 1 )
|
|
{
|
|
if ( stat ( config->netfile, &st ) < 0 )
|
|
{
|
|
do_train = true;
|
|
} else {
|
|
if ( !( net = som_deserialize ( config->netfile )))
|
|
{
|
|
AI_fatal_err ( "AIPreproc: Error in deserializing the neural network from the network file", __FILE__, __LINE__ );
|
|
}
|
|
|
|
/* If more than N seconds passed from the latest serialization, re-train the neural network */
|
|
if ( (int) ( time (NULL) - net->serialization_time ) > config->neuralNetworkTrainingInterval )
|
|
{
|
|
do_train = true;
|
|
}
|
|
}
|
|
|
|
if ( do_train )
|
|
{
|
|
__AI_som_train();
|
|
}
|
|
|
|
sleep ( config->neuralNetworkTrainingInterval );
|
|
}
|
|
|
|
pthread_exit ((void*) 0);
|
|
return (void*) 0;
|
|
} /* ----- end of function AI_neural_thread ----- */
|
|
|
|
#endif
|
|
|
|
/** @} */
|
|
|