mirror of
https://github.com/BlackLight/Snort_AIPreproc.git
synced 2024-11-14 20:57:15 +01:00
445 lines
9 KiB
C
445 lines
9 KiB
C
/*
|
|
* =====================================================================================
|
|
*
|
|
* Filename: kmeans.c
|
|
*
|
|
* Description: k-means clusterization algorithm implementation in C
|
|
*
|
|
* Version: 1.0
|
|
* Created: 12/11/2010 10:43:28
|
|
* Revision: none
|
|
* Compiler: gcc
|
|
*
|
|
* Author: BlackLight (http://0x00.ath.cx), <blacklight@autistici.org>
|
|
* Licence: GNU GPL v.3
|
|
* Company: DO WHAT YOU WANT CAUSE A PIRATE IS FREE, YOU ARE A PIRATE!
|
|
*
|
|
* =====================================================================================
|
|
*/
|
|
|
|
#include "kmeans.h"
|
|
|
|
#include <alloca.h>
|
|
#include <float.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
/**
|
|
* \brief Initialize the centers of the clusters taking the K most distant elements in the dataset
|
|
* \param km k-means object
|
|
*/
|
|
|
|
static void
|
|
__kmeans_init_centers ( kmeans_t *km )
|
|
{
|
|
int i, j, k, l,
|
|
index_found = 0,
|
|
max_index = 0,
|
|
assigned_centers = 0,
|
|
*assigned_centers_indexes = NULL;
|
|
|
|
double dist = 0.0,
|
|
max_dist = 0.0;
|
|
|
|
for ( i=0; i < km->dataset_size; i++ )
|
|
{
|
|
dist = 0.0;
|
|
|
|
for ( j=0; j < km->dataset_dim; j++ )
|
|
{
|
|
dist += ( km->dataset[i][j] ) * ( km->dataset[i][j] );
|
|
}
|
|
|
|
if ( dist > max_dist )
|
|
{
|
|
max_dist = dist;
|
|
max_index = i;
|
|
}
|
|
}
|
|
|
|
for ( i=0; i < km->dataset_dim; i++ )
|
|
{
|
|
km->centers[0][i] = km->dataset[max_index][i];
|
|
}
|
|
|
|
if ( !( assigned_centers_indexes = (int*) realloc ( assigned_centers_indexes, (++assigned_centers) * sizeof ( int ))))
|
|
{
|
|
return;
|
|
}
|
|
|
|
assigned_centers_indexes[ assigned_centers - 1 ] = max_index;
|
|
|
|
for ( i=1; i < km->k; i++ )
|
|
{
|
|
max_dist = 0.0;
|
|
max_index = 0;
|
|
|
|
for ( j=0; j < km->dataset_size; j++ )
|
|
{
|
|
index_found = 0;
|
|
|
|
for ( k=0; k < assigned_centers && !index_found; k++ )
|
|
{
|
|
if ( assigned_centers_indexes[k] == j )
|
|
{
|
|
index_found = 1;
|
|
}
|
|
}
|
|
|
|
if ( index_found )
|
|
continue;
|
|
|
|
dist = 0.0;
|
|
|
|
for ( k=0; k < assigned_centers; k++ )
|
|
{
|
|
for ( l=0; l < km->dataset_dim; l++ )
|
|
{
|
|
dist += ( km->dataset[j][l] - km->centers[k][l] ) * ( km->dataset[j][l] - km->centers[k][l] );
|
|
}
|
|
}
|
|
|
|
if ( dist > max_dist )
|
|
{
|
|
max_dist = dist;
|
|
max_index = j;
|
|
}
|
|
}
|
|
|
|
for ( j=0; j < km->dataset_dim; j++ )
|
|
{
|
|
km->centers[i][j] = km->dataset[max_index][j];
|
|
}
|
|
|
|
if ( !( assigned_centers_indexes = (int*) realloc ( assigned_centers_indexes, (++assigned_centers) * sizeof ( int ))))
|
|
{
|
|
return;
|
|
}
|
|
|
|
assigned_centers_indexes[ assigned_centers - 1 ] = max_index;
|
|
}
|
|
|
|
free ( assigned_centers_indexes );
|
|
} /* ----- end of function kmeans_init_centers ----- */
|
|
|
|
/**
|
|
* \brief Create a new k-means object
|
|
* \param dataset Dataset to be clustered
|
|
* \param dataset_size Number of elements in the dataset
|
|
* \param dataset_dim Dimension of each element of the dataset
|
|
* \param K Number of clusters
|
|
* \return Reference to the newly created k-means object, if successfull, NULL otherwise
|
|
*/
|
|
|
|
kmeans_t*
|
|
kmeans_new ( double **dataset, const int dataset_size, const int dataset_dim, const int K )
|
|
{
|
|
int i, j;
|
|
kmeans_t *km = NULL;
|
|
|
|
if ( !( km = (kmeans_t*) malloc ( sizeof ( kmeans_t ))))
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
if ( !( km->dataset = (double**) calloc ( dataset_size, sizeof ( double* ))))
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
for ( i=0; i < dataset_size; i++ )
|
|
{
|
|
if ( !( km->dataset[i] = (double*) calloc ( dataset_dim, sizeof ( double ))))
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
for ( j=0; j < dataset_dim; j++ )
|
|
{
|
|
km->dataset[i][j] = dataset[i][j];
|
|
}
|
|
}
|
|
|
|
km->dataset_size = dataset_size;
|
|
km->dataset_dim = dataset_dim;
|
|
km->k = K;
|
|
|
|
if ( !( km->clusters = (double***) calloc ( K, sizeof ( double** ))))
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
if ( !( km->cluster_sizes = (int*) calloc ( K, sizeof ( int* ))))
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
if ( !( km->centers = (double**) calloc ( K, sizeof ( double* ))))
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
for ( i=0; i < K; i++ )
|
|
{
|
|
if ( !( km->centers[i] = (double*) calloc ( dataset_dim, sizeof ( double ))))
|
|
{
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
__kmeans_init_centers ( km );
|
|
return km;
|
|
} /* ----- end of function kmeans_new ----- */
|
|
|
|
/**
|
|
* \brief Function that performs a single step for k-means algorithm
|
|
* \param km k-means object
|
|
* \return 0 if no changes were performed by this step, 1 otherwise, -1 in case of error
|
|
*/
|
|
|
|
static int
|
|
__kmeans_step ( kmeans_t *km )
|
|
{
|
|
int i, j, k,
|
|
best_center = 0;
|
|
|
|
double dist = 0.0,
|
|
min_dist = DBL_MAX,
|
|
**old_centers = NULL;
|
|
|
|
if ( km->clusters[0] )
|
|
{
|
|
for ( i=0; i < km->k; i++ )
|
|
{
|
|
for ( j=0; j < km->cluster_sizes[i]; j++ )
|
|
{
|
|
free ( km->clusters[i][j] );
|
|
km->clusters[i][j] = NULL;
|
|
}
|
|
|
|
free ( km->clusters[i] );
|
|
km->clusters[i] = NULL;
|
|
km->cluster_sizes[i] = 0;
|
|
}
|
|
}
|
|
|
|
if ( !( old_centers = (double**) alloca ( km->k * sizeof ( double* ))))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
for ( i=0; i < km->k; i++ )
|
|
{
|
|
if ( !( old_centers[i] = (double*) alloca ( km->dataset_dim * sizeof ( double ))))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
for ( j=0; j < km->dataset_dim; j++ )
|
|
{
|
|
old_centers[i][j] = km->centers[i][j];
|
|
}
|
|
}
|
|
|
|
for ( i=0; i < km->dataset_size; i++ )
|
|
{
|
|
min_dist = DBL_MAX;
|
|
best_center = 0;
|
|
|
|
for ( j=0; j < km->k; j++ )
|
|
{
|
|
dist = 0.0;
|
|
|
|
for ( k=0; k < km->dataset_dim; k++ )
|
|
{
|
|
dist += ( km->dataset[i][k] - km->centers[j][k] ) * ( km->dataset[i][k] - km->centers[j][k] );
|
|
}
|
|
|
|
if ( dist < min_dist )
|
|
{
|
|
min_dist = dist;
|
|
best_center = j;
|
|
}
|
|
}
|
|
|
|
if ( !( km->clusters[best_center] = (double**) realloc ( km->clusters[best_center], (++(km->cluster_sizes[best_center])) * sizeof ( double* ))))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
if ( !( km->clusters [best_center] [km->cluster_sizes[best_center]-1] = (double*) calloc ( km->dataset_dim, sizeof ( double ))))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
for ( j=0; j < km->dataset_dim; j++ )
|
|
{
|
|
km->clusters [best_center] [km->cluster_sizes[best_center]-1] [j] = km->dataset[i][j];
|
|
}
|
|
}
|
|
|
|
for ( i=0; i < km->k; i++ )
|
|
{
|
|
for ( j=0; j < km->dataset_dim; j++ )
|
|
{
|
|
km->centers[i][j] = 0.0;
|
|
|
|
for ( k=0; k < km->cluster_sizes[i]; k++ )
|
|
{
|
|
km->centers[i][j] += km->clusters[i][k][j];
|
|
}
|
|
|
|
if ( km->cluster_sizes[i] != 0 )
|
|
{
|
|
km->centers[i][j] /= (double) km->cluster_sizes[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
for ( i=0; i < km->k; i++ )
|
|
{
|
|
for ( j=0; j < km->dataset_dim; j++ )
|
|
{
|
|
if ( km->centers[i][j] != old_centers[i][j] )
|
|
{
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
} /* ----- end of function __kmeans_step ----- */
|
|
|
|
/**
|
|
* \brief Perform the k-means algorithm over a k-means object
|
|
* \param km k-means object
|
|
*/
|
|
|
|
void
|
|
kmeans ( kmeans_t *km )
|
|
{
|
|
while ( __kmeans_step ( km ) != 0 );
|
|
} /* ----- end of function kmeans ----- */
|
|
|
|
/**
|
|
* \brief Compute the heuristic coefficient associated to the current number of clusters through Schwarz's criterion
|
|
* \param km k-means object
|
|
* \return Real value expressing how well that number of clusters models the dataset
|
|
*/
|
|
|
|
static double
|
|
__kmeans_heuristic_coefficient ( kmeans_t *km )
|
|
{
|
|
int i, j, k;
|
|
double distorsion = 0.0;
|
|
|
|
for ( i=0; i < km->k; i++ )
|
|
{
|
|
for ( j=0; j < km->cluster_sizes[i]; j++ )
|
|
{
|
|
for ( k=0; k < km->dataset_dim; k++ )
|
|
{
|
|
distorsion += ( km->centers[i][k] - km->clusters[i][j][k] ) * ( km->centers[i][k] - km->clusters[i][j][k] );
|
|
}
|
|
}
|
|
}
|
|
|
|
return distorsion + km->k * log ( km->dataset_size );
|
|
} /* ----- end of function __kmeans_heuristic_coefficient ----- */
|
|
|
|
/**
|
|
* \brief Remove a k-means object
|
|
* \param km k-means object to be deallocaed
|
|
*/
|
|
|
|
void
|
|
kmeans_free ( kmeans_t *km )
|
|
{
|
|
int i, j;
|
|
|
|
for ( i=0; i < km->k; i++ )
|
|
{
|
|
for ( j=0; j < km->cluster_sizes[i]; j++ )
|
|
{
|
|
free ( km->clusters[i][j] );
|
|
km->clusters[i][j] = NULL;
|
|
}
|
|
|
|
free ( km->clusters[i] );
|
|
km->clusters[i] = NULL;
|
|
}
|
|
|
|
free ( km->clusters );
|
|
km->clusters = NULL;
|
|
|
|
free ( km->cluster_sizes );
|
|
km->cluster_sizes = NULL;
|
|
|
|
for ( i=0; i < km->k; i++ )
|
|
{
|
|
free ( km->centers[i] );
|
|
km->centers[i] = NULL;
|
|
}
|
|
|
|
free ( km->centers );
|
|
km->centers = NULL;
|
|
|
|
for ( i=0; i < km->dataset_size; i++ )
|
|
{
|
|
free ( km->dataset[i] );
|
|
km->dataset[i] = NULL;
|
|
}
|
|
|
|
free ( km->dataset );
|
|
km->dataset = NULL;
|
|
|
|
free ( km );
|
|
km = NULL;
|
|
} /* ----- end of function kmeans_free ----- */
|
|
|
|
/**
|
|
* \brief Perform a k-means clustering over a dataset automatically choosing the best value of k using Schwarz's criterion
|
|
* \param dataset Dataset to be clustered
|
|
* \param dataset_size Number of elements in the dataset
|
|
* \param dataset_dim Dimension of each element of the dataset
|
|
* \return Reference to the newly created k-means object, if successfull, NULL otherwise
|
|
*/
|
|
|
|
kmeans_t*
|
|
kmeans_auto ( double **dataset, int dataset_size, int dataset_dim )
|
|
{
|
|
int i;
|
|
|
|
double heuristic = 0.0,
|
|
best_heuristic = DBL_MAX;
|
|
|
|
kmeans_t *km = NULL,
|
|
*best_km = NULL;
|
|
|
|
for ( i=1; i <= dataset_size; i++ )
|
|
{
|
|
if ( !( km = kmeans_new ( dataset, dataset_size, dataset_dim, i )))
|
|
return NULL;
|
|
|
|
kmeans ( km );
|
|
heuristic = __kmeans_heuristic_coefficient ( km );
|
|
|
|
if ( heuristic < best_heuristic )
|
|
{
|
|
if ( best_km )
|
|
{
|
|
kmeans_free ( best_km );
|
|
}
|
|
|
|
best_km = km;
|
|
best_heuristic = heuristic;
|
|
} else {
|
|
kmeans_free ( km );
|
|
}
|
|
}
|
|
|
|
return best_km;
|
|
} /* ----- end of function kmeans_auto ----- */
|
|
|