mirror of
https://github.com/BlackLight/Snort_AIPreproc.git
synced 2024-11-16 05:27:16 +01:00
597 lines
21 KiB
C
597 lines
21 KiB
C
/*
|
|
* =====================================================================================
|
|
*
|
|
* Filename: spp_ai.h
|
|
*
|
|
* Description: Header file for the preprocessor
|
|
*
|
|
* Version: 1.0
|
|
* Created: 30/07/2010 15:47:12
|
|
* Revision: none
|
|
* Compiler: gcc
|
|
*
|
|
* Author: BlackLight (http://0x00.ath.cx), <blacklight@autistici.org>
|
|
* Licence: GNU GPL v.3
|
|
* Company: DO WHAT YOU WANT CAUSE A PIRATE IS FREE, YOU ARE A PIRATE!
|
|
*
|
|
* =====================================================================================
|
|
*/
|
|
|
|
#ifndef _SPP_AI_H
|
|
#define _SPP_AI_H
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "sf_snort_packet.h"
|
|
#include "sf_dynamic_preprocessor.h"
|
|
#include "uthash.h"
|
|
|
|
#include <pthread.h>
|
|
|
|
#define PRIVATE static
|
|
|
|
/** Default interval in seconds for the thread cleaning up TCP streams */
|
|
#define DEFAULT_HASH_CLEANUP_INTERVAL 300
|
|
|
|
/** Default interval in seconds before a stream without any packet is considered timed out */
|
|
#define DEFAULT_STREAM_EXPIRE_INTERVAL 300
|
|
|
|
/** Default interval in seconds for reading alerts from the alert database, if used */
|
|
#define DEFAULT_DATABASE_INTERVAL 30
|
|
|
|
/** Default interval in seconds for the thread clustering alerts */
|
|
#define DEFAULT_ALERT_CLUSTERING_INTERVAL 300
|
|
|
|
/** Default interval in seconds for running the graph correlation thread */
|
|
#define DEFAULT_ALERT_CORRELATION_INTERVAL 300
|
|
|
|
/** Default path to Snort's log file */
|
|
#define DEFAULT_ALERT_LOG_FILE "/var/log/snort/alert"
|
|
|
|
/** Default path to Snort's clustered alerts file */
|
|
#define DEFAULT_CLUSTER_LOG_FILE "/var/log/snort/clustered_alerts"
|
|
|
|
/** Default path to alert correlation rules directory */
|
|
#define DEFAULT_CORR_RULES_DIR "/etc/snort/corr_rules"
|
|
|
|
/** Default directory for placing correlated alerts information (.dot and possibly .png files) */
|
|
#define DEFAULT_CORR_ALERTS_DIR "/var/log/snort/correlated_alerts"
|
|
|
|
/** Default path to alert history binary file, used for bayesian statistical correlation over alerts */
|
|
#define DEFAULT_ALERT_HISTORY_FILE "/var/log/snort/alert_history"
|
|
|
|
/** Default correlation threshold coefficient for correlating two hyperalerts */
|
|
#define DEFAULT_CORR_THRESHOLD 0.5
|
|
|
|
/** Default size of the alerts' buffer to be periodically sent to the serialization thread */
|
|
#define DEFAULT_ALERT_BUFSIZE 30
|
|
|
|
/** Default timeout in seconds between a serialization of the alerts' buffer and the next one */
|
|
#define DEFAULT_ALERT_SERIALIZATION_INTERVAL 3600
|
|
|
|
/** Default interval between two alerts (a,b) for considering them correlated */
|
|
#define DEFAULT_BAYESIAN_CORRELATION_INTERVAL 1200
|
|
|
|
/** Default interval in seconds between an invocation of the thread for parsing XML manual correlations and the next one */
|
|
#define DEFAULT_MANUAL_CORRELATIONS_PARSING_INTERVAL 120
|
|
|
|
/** Default interval in seconds between a training loop for the neural network for
|
|
* alert correlations and the next one (this value should usually be high) */
|
|
#define DEFAULT_NEURAL_NETWORK_TRAINING_INTERVAL 43200
|
|
|
|
/** Default interval in seconds between an execution of the thread that attempts to cluster
|
|
* the output layer of the neural network searching for alerts belonging to the same
|
|
* attack scenario and the next one */
|
|
#define DEFAULT_NEURAL_CLUSTERING_INTERVAL 1200
|
|
|
|
/** Default interval of validity in seconds for an entry in the cache of correlated alerts */
|
|
#define DEFAULT_BAYESIAN_CORRELATION_CACHE_VALIDITY 600
|
|
|
|
/** Default maximum interval, in seconds, between two alerts for being considered in the same cluster */
|
|
#define DEFAULT_CLUSTER_MAX_ALERT_INTERVAL 14400
|
|
|
|
/** Default number of neurons per side on the output matrix of the SOM neural network */
|
|
#define DEFAULT_OUTPUT_NEURONS_PER_SIDE 20
|
|
|
|
/** Default number of steps used for training the neural network */
|
|
#define DEFAULT_NEURAL_TRAIN_STEPS 10
|
|
|
|
/** Default maximum number of packets that an observed stream in the hash table should hold */
|
|
#define DEFAULT_MAX_HASH_PKT_NUMBER 1000
|
|
|
|
/** Default number of alerts needed in the history file or database for letting a certain
|
|
* heuristic correlation index weight be =~ 0.95 (the weight monotonically increases
|
|
* with the number of alerts according to a hyperbolic tangent function) */
|
|
#define DEFAULT_ALERT_CORRELATION_WEIGHT 5000
|
|
|
|
/** Default setting for the use of the hash table for holding streams of packets
|
|
* associated to a certain alert (0 = do not use, 1 or any value != 0: use) */
|
|
#define DEFAULT_USE_STREAM_HASH_TABLE 1
|
|
|
|
/** Default web server port */
|
|
#define DEFAULT_WEBSERV_PORT 7654
|
|
|
|
/** Default web server banner */
|
|
#define DEFAULT_WEBSERV_BANNER "Snort AIPreprocessor module"
|
|
|
|
/** Cutoff y value in the exponential decay for considering two alerts not correlated */
|
|
#define CUTOFF_Y_VALUE 0.01
|
|
|
|
/** Approximated solution of the equation tanh(x) = 0.95 (used as parameter in the correlation indexes weight function) */
|
|
#define HYPERBOLIC_TANGENT_SOLUTION 1.83178
|
|
|
|
/****************************/
|
|
/* Database support */
|
|
#ifdef HAVE_LIBMYSQLCLIENT
|
|
#define HAVE_DB 1
|
|
#endif
|
|
|
|
#ifdef HAVE_LIBPQ
|
|
#define HAVE_DB 1
|
|
#endif
|
|
/****************************/
|
|
|
|
extern DynamicPreprocessorData _dpd;
|
|
typedef unsigned char uint8_t;
|
|
typedef unsigned short uint16_t;
|
|
typedef unsigned int uint32_t;
|
|
|
|
typedef enum { false, true } BOOL;
|
|
|
|
/*****************************************************************/
|
|
/** Possible types of clustering attributes */
|
|
typedef enum {
|
|
none, src_addr, dst_addr, src_port, dst_port, CLUSTER_TYPES
|
|
} cluster_type;
|
|
/*****************************************************************/
|
|
/** Each stream in the hash table is identified by the couple (src_ip, dst_port) */
|
|
struct pkt_key
|
|
{
|
|
uint32_t src_ip;
|
|
uint16_t dst_port;
|
|
};
|
|
/*****************************************************************/
|
|
/** Identifier of a packet in a stream */
|
|
struct pkt_info
|
|
{
|
|
/** Key of the packet (src_ip, dst_port) */
|
|
struct pkt_key key;
|
|
|
|
/** Timestamp */
|
|
time_t timestamp;
|
|
|
|
/** Reference to SFSnortPacket containing packet's information */
|
|
SFSnortPacket* pkt;
|
|
|
|
/** Pointer to the next packet in the stream */
|
|
struct pkt_info* next;
|
|
|
|
/** Flag set if the packet is observed, i.e. associated to a security alert */
|
|
BOOL observed;
|
|
|
|
/** Number of packets in the current flow, if available */
|
|
unsigned int n_packets;
|
|
|
|
/** Make the struct 'hashable' */
|
|
UT_hash_handle hh;
|
|
};
|
|
/*****************************************************************/
|
|
/* Data type containing the configuration of the module */
|
|
typedef struct
|
|
{
|
|
/** Interval in seconds for the stream cleanup thread */
|
|
unsigned long hashCleanupInterval;
|
|
|
|
/** Interval in seconds for considering an idle stream timed out */
|
|
unsigned long streamExpireInterval;
|
|
|
|
/** Interval in seconds for the alert clustering thread */
|
|
unsigned long alertClusteringInterval;
|
|
|
|
/** Interval in seconds for reading the alert database, if database logging is used */
|
|
unsigned long databaseParsingInterval;
|
|
|
|
/** Interval in seconds for running the thread for building alert correlation graphs */
|
|
unsigned long correlationGraphInterval;
|
|
|
|
/** Interval in seconds between a serialization of the alerts' buffer and the next one */
|
|
unsigned long alertSerializationInterval;
|
|
|
|
/** Interval in seconds between two alerts (a,b) for considering them correlated */
|
|
unsigned long bayesianCorrelationInterval;
|
|
|
|
/** Default maximum interval, in seconds, between two alerts for being considered in the same cluster */
|
|
unsigned long clusterMaxAlertInterval;
|
|
|
|
/** Interval in seconds between an invocation of the thread for parsing XML manual correlations and the next one */
|
|
unsigned long manualCorrelationsParsingInterval;
|
|
|
|
/** Interval in seconds between an execution of the thread that attempts to cluster
|
|
* the output layer of the neural network searching for alerts belonging to the same
|
|
* attack scenario and the next one */
|
|
unsigned long neuralClusteringInterval;
|
|
|
|
/** Interval in seconds for which an entry in the cache of correlated alerts is valid */
|
|
unsigned long bayesianCorrelationCacheValidity;
|
|
|
|
/** Interval in seconds between a training loop for the neural network for
|
|
* alert correlations and the next one (this value should usually be high) */
|
|
unsigned long neuralNetworkTrainingInterval;
|
|
|
|
/** Number of neurons per side on the output matrix of the SOM neural network */
|
|
unsigned long outputNeuronsPerSide;
|
|
|
|
/** Number of alerts needed in the history file or database for letting a certain
|
|
* heuristic correlation index weight be =~ 0.95 (the weight monotonically increases
|
|
* with the number of alerts according to a hyperbolic tangent function) */
|
|
unsigned long alert_correlation_weight;
|
|
|
|
/** Maximum number of packets that an observed stream in the hash table should hold */
|
|
unsigned long max_hash_pkt_number;
|
|
|
|
/** Number of steps used for training the neural network */
|
|
unsigned long neural_train_steps;
|
|
|
|
/** Size of the alerts' buffer to be periodically sent to the serialization thread */
|
|
unsigned long alert_bufsize;
|
|
|
|
/** Setting for the use of the hash table for holding streams of packets
|
|
* associated to a certain alert (0 = do not use, 1 or any value != 0: use) */
|
|
unsigned long use_stream_hash_table;
|
|
|
|
/** Correlation threshold coefficient for correlating two hyperalerts. Two hyperalerts
|
|
* are 'correlated' to each other in a multi-step attack graph if and only if their
|
|
* correlation value is >= m + ks, where m is the average correlation coefficient,
|
|
* s is the standard deviation over this coefficient, and k is this threshold
|
|
* coefficient. Its value can be >= 0. A value in [0,1] is strongly suggested,
|
|
* but this value mostly depends on how accurate the correlation rules where
|
|
* defined. Be careful, defining a correlation coefficient > or >> 1 no correlation
|
|
* may occur at all! */
|
|
double correlationThresholdCoefficient;
|
|
|
|
/** Port where the webserver providing the web interface for the correlation graph
|
|
* will listen onto */
|
|
unsigned short webserv_port;
|
|
|
|
/** (Absolute) path to the directory containing the HTML files for the web interface */
|
|
char webserv_dir[1024];
|
|
|
|
/** Banner string of the web server (this will be placed in the 'Server' HTTP header
|
|
* and in the footer of error pages */
|
|
char webserv_banner[1024];
|
|
|
|
/** Directory containing extra correlation modules */
|
|
char corr_modules_dir[1024];
|
|
|
|
/** Alert file */
|
|
char alertfile[1024];
|
|
|
|
/** Alert history binary file */
|
|
char alert_history_file[1024];
|
|
|
|
/** Clustered alerts file */
|
|
char clusterfile[1024];
|
|
|
|
/** Correlation rules path */
|
|
char corr_rules_dir[1024];
|
|
|
|
/** Directory where the correlated alerts' information will be placed */
|
|
char corr_alerts_dir[1024];
|
|
|
|
/** File keeping the serialized neural network used for the alert correlation */
|
|
char netfile[1024];
|
|
|
|
/** File containing the likely clusters computed over the output layer of the neural network */
|
|
char neural_clusters_log[1024];
|
|
|
|
/** Database name, if database logging is used */
|
|
char dbname[256];
|
|
|
|
/** Database user, if database logging is used */
|
|
char dbuser[256];
|
|
|
|
/** Database password, if database logging is used */
|
|
char dbpass[256];
|
|
|
|
/** Database host, if database logging is used */
|
|
char dbhost[256];
|
|
|
|
/** Output database type, if clustered alerts and
|
|
* correlations are saved to a database as well */
|
|
enum { outdb_none, outdb_mysql, outdb_postgresql, OUTDBTYPE_NUM } outdbtype;
|
|
|
|
/** Output database name, if clustered alerts and
|
|
* correlations are saved to a database as well */
|
|
char outdbname[256];
|
|
|
|
/** Output database user, if clustered alerts and
|
|
* correlations are saved to a database as well */
|
|
char outdbuser[256];
|
|
|
|
/** Output database password, if clustered alerts and
|
|
* correlations are saved to a database as well */
|
|
char outdbpass[256];
|
|
|
|
/** Output database host, if clustered alerts and
|
|
* correlations are saved to a database as well */
|
|
char outdbhost[256];
|
|
} AI_config;
|
|
/*****************************************************************/
|
|
/** Data type for hierarchies used for clustering */
|
|
typedef struct _hierarchy_node
|
|
{
|
|
cluster_type type;
|
|
char label[256];
|
|
int min_val;
|
|
int max_val;
|
|
int nchildren;
|
|
struct _hierarchy_node *parent;
|
|
struct _hierarchy_node **children;
|
|
} hierarchy_node;
|
|
/*****************************************************************/
|
|
/** Key for the hyperalert hash table */
|
|
typedef struct
|
|
{
|
|
unsigned int gid;
|
|
unsigned int sid;
|
|
unsigned int rev;
|
|
} AI_hyperalert_key;
|
|
/*****************************************************************/
|
|
/** Hyperalert hash table */
|
|
typedef struct
|
|
{
|
|
/** Hyperalert key */
|
|
AI_hyperalert_key key;
|
|
|
|
/** Pre-conditions, as array of strings */
|
|
char **preconds;
|
|
|
|
/** Number of pre-conditions */
|
|
unsigned int n_preconds;
|
|
|
|
/** Post-conditions, as array of strings */
|
|
char **postconds;
|
|
|
|
/** Number of post-conditions */
|
|
unsigned int n_postconds;
|
|
|
|
/** Make the struct 'hashable' */
|
|
UT_hash_handle hh;
|
|
} AI_hyperalert_info;
|
|
/*****************************************************************/
|
|
/** Data type for Snort alerts */
|
|
typedef struct _AI_snort_alert {
|
|
/* Identifiers of the alert */
|
|
unsigned int gid;
|
|
unsigned int sid;
|
|
unsigned int rev;
|
|
|
|
/* Snort priority, description,
|
|
* classification and timestamp
|
|
* of the alert */
|
|
unsigned short priority;
|
|
char *desc;
|
|
char *classification;
|
|
time_t timestamp;
|
|
|
|
/* IP header information */
|
|
uint8_t ip_tos;
|
|
uint16_t ip_len;
|
|
uint16_t ip_id;
|
|
uint8_t ip_ttl;
|
|
uint8_t ip_proto;
|
|
uint32_t ip_src_addr;
|
|
uint32_t ip_dst_addr;
|
|
|
|
/* TCP header information */
|
|
uint16_t tcp_src_port;
|
|
uint16_t tcp_dst_port;
|
|
uint32_t tcp_seq;
|
|
uint32_t tcp_ack;
|
|
uint8_t tcp_flags;
|
|
uint16_t tcp_window;
|
|
uint16_t tcp_len;
|
|
|
|
/** Reference to the TCP stream
|
|
* associated to the alert, if any */
|
|
struct pkt_info *stream;
|
|
|
|
/** Pointer to the next alert in
|
|
* the log, if any*/
|
|
struct _AI_snort_alert *next;
|
|
|
|
/** Hierarchies for addresses and ports,
|
|
* if the clustering algorithm is used */
|
|
hierarchy_node *h_node[CLUSTER_TYPES];
|
|
|
|
/** If the clustering algorithm is used,
|
|
* keep tracked of the pointers to the
|
|
* single grouped alerts */
|
|
struct _AI_snort_alert **grouped_alerts;
|
|
|
|
/** If the clustering algorithm is used,
|
|
* we also count how many alerts this
|
|
* single alert groups */
|
|
unsigned int grouped_alerts_count;
|
|
|
|
/** Hyperalert information, pre-conditions
|
|
* and post-conditions*/
|
|
AI_hyperalert_info *hyperalert;
|
|
|
|
/* Parent alerts in the chain, if any */
|
|
struct _AI_snort_alert **parent_alerts;
|
|
|
|
/* Number of parent alerts */
|
|
unsigned int n_parent_alerts;
|
|
|
|
/** Array of directly correlated 'derived'
|
|
* alerts from the current one, if any */
|
|
struct _AI_snort_alert **derived_alerts;
|
|
|
|
/** Number of derived alerts */
|
|
unsigned int n_derived_alerts;
|
|
|
|
/** Alert ID on the database, if the alerts
|
|
* are stored on a database as well */
|
|
unsigned long int alert_id;
|
|
} AI_snort_alert;
|
|
/*****************************************************************/
|
|
/** Key for the AI_alert_event structure, containing the Snort ID of the alert */
|
|
typedef struct {
|
|
int gid;
|
|
int sid;
|
|
int rev;
|
|
} AI_alert_event_key;
|
|
/*****************************************************************/
|
|
/** Structure representing the historical information of an alert saved in alert_history */
|
|
typedef struct _AI_alert_event {
|
|
AI_alert_event_key key;
|
|
unsigned int count;
|
|
time_t timestamp;
|
|
struct _AI_alert_event *next;
|
|
UT_hash_handle hh;
|
|
} AI_alert_event;
|
|
/*****************************************************************/
|
|
/** Simple structure for holding a couple of alerts to be merged, to be passed to the outdb thread */
|
|
typedef struct {
|
|
AI_snort_alert *alert1;
|
|
AI_snort_alert *alert2;
|
|
} AI_alerts_couple;
|
|
/*****************************************************************/
|
|
/** Key for the correlation hash table */
|
|
typedef struct {
|
|
/** First alert */
|
|
AI_snort_alert *a;
|
|
|
|
/** Second alert */
|
|
AI_snort_alert *b;
|
|
} AI_alert_correlation_key;
|
|
/*****************************************************************/
|
|
/** Struct representing the correlation between all the couples of alerts */
|
|
typedef struct {
|
|
/** Hash key */
|
|
AI_alert_correlation_key key;
|
|
|
|
/** Correlation coefficient */
|
|
double correlation;
|
|
|
|
/** Make the struct 'hashable' */
|
|
UT_hash_handle hh;
|
|
} AI_alert_correlation;
|
|
/*****************************************************************/
|
|
/** Expresses an alert as a numerical tuple manageable by a neural network */
|
|
typedef struct {
|
|
unsigned int gid;
|
|
unsigned int sid;
|
|
unsigned int rev;
|
|
uint32_t src_ip_addr;
|
|
uint32_t dst_ip_addr;
|
|
uint16_t src_port;
|
|
uint16_t dst_port;
|
|
time_t timestamp;
|
|
char* desc;
|
|
} AI_som_alert_tuple;
|
|
/*****************************************************************/
|
|
/** Key for the AI_alerts_per_neuron hash table */
|
|
typedef struct {
|
|
int x;
|
|
int y;
|
|
} AI_alerts_per_neuron_key;
|
|
/*****************************************************************/
|
|
/** Struct that holds, for each point of the output layer, the list of associated alerts
|
|
* for easily performing the clustering algorithm */
|
|
typedef struct {
|
|
AI_alerts_per_neuron_key key;
|
|
AI_som_alert_tuple *alerts;
|
|
int n_alerts;
|
|
UT_hash_handle hh;
|
|
} AI_alerts_per_neuron;
|
|
/*****************************************************************/
|
|
|
|
|
|
/** Enumeration for describing the table in the output database */
|
|
enum { ALERTS_TABLE, IPV4_HEADERS_TABLE, TCP_HEADERS_TABLE, PACKET_STREAMS_TABLE, CLUSTERED_ALERTS_TABLE, CORRELATED_ALERTS_TABLE, N_TABLES };
|
|
|
|
/** Tables in the output database */
|
|
static const char *outdb_config[] __attribute__ (( unused )) = {
|
|
"ca_alerts", "ca_ipv4_headers", "ca_tcp_headers",
|
|
"ca_packet_streams", "ca_clustered_alerts", "ca_correlated_alerts"
|
|
};
|
|
|
|
/*
|
|
* The unused attribute is needed for gcc to avoid raising a warning
|
|
* of "unused variable" when compiling with -Wall -pedantic -pedatic errors,
|
|
* since this array is declared here but only used in two source files
|
|
*/
|
|
|
|
/*****************************************************************/
|
|
|
|
int preg_match ( const char*, char*, char***, int* );
|
|
char* str_replace ( char*, char*, char *);
|
|
char* str_replace_all ( char*, char*, char* );
|
|
void base64_encode ( const char*, size_t, char** );
|
|
void base64_decode ( const char*, char** );
|
|
|
|
void AI_fatal_err ( const char *msg, const char *file, const int line );
|
|
void* AI_hashcleanup_thread ( void* );
|
|
void* AI_file_alertparser_thread ( void* );
|
|
void* AI_alert_correlation_thread ( void* );
|
|
void* AI_webserv_thread ( void* );
|
|
|
|
#ifdef HAVE_DB
|
|
AI_snort_alert* AI_db_get_alerts ( void );
|
|
void AI_db_free_alerts ( AI_snort_alert* );
|
|
void* AI_db_alertparser_thread ( void* );
|
|
#endif
|
|
|
|
void AI_pkt_enqueue ( SFSnortPacket* );
|
|
void AI_set_stream_observed ( struct pkt_key key );
|
|
void AI_hierarchies_build ( hierarchy_node**, int );
|
|
void AI_free_alerts ( AI_snort_alert *node );
|
|
void AI_init_corr_modules ();
|
|
|
|
struct pkt_info* AI_get_stream_by_key ( struct pkt_key );
|
|
AI_snort_alert* AI_get_alerts ( void );
|
|
AI_snort_alert* AI_get_clustered_alerts ( void );
|
|
|
|
void AI_serialize_alerts ( AI_snort_alert**, unsigned int );
|
|
void AI_serializer ( AI_snort_alert* );
|
|
void* AI_deserialize_alerts ();
|
|
void* AI_alerts_pool_thread ( void* );
|
|
void* AI_neural_thread ( void* );
|
|
const AI_alert_event* AI_get_alert_events_by_key ( AI_alert_event_key );
|
|
unsigned int AI_get_history_alert_number ();
|
|
double AI_alert_bayesian_correlation ( const AI_snort_alert*, const AI_snort_alert* );
|
|
double AI_alert_neural_som_correlation ( const AI_snort_alert*, const AI_snort_alert* );
|
|
double AI_neural_correlation_weight ();
|
|
double AI_bayesian_correlation_weight ();
|
|
|
|
void AI_outdb_mutex_initialize ();
|
|
void AI_store_alert_to_db ( AI_snort_alert* );
|
|
void AI_store_cluster_to_db ( AI_alerts_couple* );
|
|
void AI_store_correlation_to_db ( AI_alert_correlation* );
|
|
void* AI_neural_clustering_thread ( void* );
|
|
AI_alerts_per_neuron* AI_get_alerts_per_neuron ();
|
|
|
|
double(**AI_get_corr_functions ( size_t* ))(const AI_snort_alert*, const AI_snort_alert*);
|
|
double(**AI_get_corr_weights ( size_t* ))();
|
|
|
|
/** Function pointer to the function used for getting the alert list (from log file, db, ...) */
|
|
extern AI_snort_alert* (*get_alerts)(void);
|
|
|
|
/** Buffer containing the alerts to be serialized on the binary history file */
|
|
extern AI_snort_alert **alerts_pool;
|
|
|
|
/** Number of alerts contained in the buffer to be serialized */
|
|
extern unsigned int alerts_pool_count;
|
|
|
|
/** Mutex variable for writing on the output database */
|
|
extern pthread_mutex_t outdb_mutex;
|
|
|
|
/** Configuration of the module */
|
|
extern AI_config *config;
|
|
|
|
#endif /* _SPP_AI_H */
|
|
|