mirror of
https://github.com/BlackLight/Snort_AIPreproc.git
synced 2024-11-14 04:37:16 +01:00
166 lines
5 KiB
C
166 lines
5 KiB
C
/*
|
|
* =====================================================================================
|
|
*
|
|
* Filename: bayesian.c
|
|
*
|
|
* Description: Module for managing bayesian not supervised correlation
|
|
*
|
|
* Version: 0.1
|
|
* Created: 28/09/2010 19:37:08
|
|
* Revision: none
|
|
* Compiler: gcc
|
|
*
|
|
* Author: BlackLight (http://0x00.ath.cx), <blacklight@autistici.org>
|
|
* Licence: GNU GPL v.3
|
|
* Company: DO WHAT YOU WANT CAUSE A PIRATE IS FREE, YOU ARE A PIRATE!
|
|
*
|
|
* =====================================================================================
|
|
*/
|
|
|
|
#include "spp_ai.h"
|
|
|
|
#include <time.h>
|
|
#include <math.h>
|
|
|
|
/** \defgroup correlation Module for the correlation of hyperalerts
|
|
* @{ */
|
|
|
|
/** Key for the bayesian correlation table */
|
|
typedef struct {
|
|
/** Snort ID of the first alert */
|
|
AI_alert_event_key a;
|
|
|
|
/** Snort ID of the second alert */
|
|
AI_alert_event_key b;
|
|
} AI_bayesian_correlation_key;
|
|
|
|
|
|
/** Bayesian alert correlation hash table */
|
|
typedef struct {
|
|
/** Key for the hash table */
|
|
AI_bayesian_correlation_key key;
|
|
|
|
/** Correlation value */
|
|
double correlation;
|
|
|
|
/** Timestamp of the last acquired correlation value */
|
|
time_t latest_computation_time;
|
|
|
|
/** Make the struct 'hashable' */
|
|
UT_hash_handle hh;
|
|
} AI_bayesian_correlation;
|
|
|
|
PRIVATE AI_bayesian_correlation *bayesian_cache = NULL;
|
|
PRIVATE double k_exp_value = 0.0;
|
|
|
|
/**
|
|
* \brief Function used for computing the correlation probability A->B of two alerts (A,B) given their timestamps: f(ta, tb) = exp ( -(tb - ta)^2 / k )
|
|
* \param ta Timestamp of A
|
|
* \param tb Timestamp of B
|
|
* \return The correlation probability A->B
|
|
*/
|
|
|
|
PRIVATE double
|
|
_AI_bayesian_correlation_function ( time_t ta, time_t tb )
|
|
{
|
|
if ( k_exp_value == 0.0 )
|
|
k_exp_value = - (double) (config->bayesianCorrelationInterval * config->bayesianCorrelationInterval) / log ( CUTOFF_Y_VALUE );
|
|
|
|
return exp ( -((ta - tb) * (ta - tb)) / k_exp_value );
|
|
} /* ----- end of function _AI_bayesian_correlation_function ----- */
|
|
|
|
/**
|
|
* \brief Compute the correlation between two alerts, A -> B: p[A|B] = p[Corr(A,B)] / P[B]
|
|
* \param a First alert
|
|
* \param b Second alert
|
|
* \return A real coefficient representing p[A|B] using the historical information
|
|
*/
|
|
|
|
double
|
|
AI_alert_bayesian_correlation ( AI_snort_alert *a, AI_snort_alert *b )
|
|
{
|
|
double corr = 0.0;
|
|
unsigned int corr_count = 0,
|
|
corr_count_a = 0;
|
|
|
|
BOOL is_a_correlated = false;
|
|
AI_bayesian_correlation_key bayesian_key;
|
|
AI_bayesian_correlation *found = NULL;
|
|
|
|
AI_alert_event_key key_a,
|
|
key_b;
|
|
|
|
AI_alert_event *events_a = NULL,
|
|
*events_b = NULL;
|
|
|
|
AI_alert_event *events_iterator_a,
|
|
*events_iterator_b;
|
|
|
|
if ( !a || !b )
|
|
return 0.0;
|
|
|
|
key_a.gid = a->gid;
|
|
key_a.sid = a->sid;
|
|
key_a.rev = a->rev;
|
|
|
|
key_b.gid = b->gid;
|
|
key_b.sid = b->sid;
|
|
key_b.rev = b->rev;
|
|
|
|
/* Check if this correlation value is already in our cache */
|
|
bayesian_key.a = key_a;
|
|
bayesian_key.b = key_b;
|
|
HASH_FIND ( hh, bayesian_cache, &bayesian_key, sizeof ( bayesian_key ), found );
|
|
|
|
if ( found )
|
|
{
|
|
/* Ok, the abs() is not needed until the time starts running backwards, but it's better going safe... */
|
|
if ( abs ( time ( NULL ) - found->latest_computation_time ) <= config->bayesianCorrelationCacheValidity )
|
|
/* If our alert couple is there, just return it */
|
|
return found->correlation;
|
|
}
|
|
|
|
if ( !( events_a = (AI_alert_event*) AI_get_alert_events_by_key ( key_a )) ||
|
|
!( events_b = (AI_alert_event*) AI_get_alert_events_by_key ( key_b )))
|
|
return 0.0;
|
|
|
|
for ( events_iterator_a = events_a; events_iterator_a; events_iterator_a = events_iterator_a->next )
|
|
{
|
|
is_a_correlated = false;
|
|
|
|
for ( events_iterator_b = events_b; events_iterator_b; events_iterator_b = events_iterator_b->next )
|
|
{
|
|
if ( abs ( events_iterator_a->timestamp - events_iterator_b->timestamp ) <= config->bayesianCorrelationInterval )
|
|
{
|
|
is_a_correlated = true;
|
|
corr_count++;
|
|
corr += _AI_bayesian_correlation_function ( events_iterator_a->timestamp, events_iterator_b->timestamp );
|
|
}
|
|
}
|
|
|
|
if ( is_a_correlated )
|
|
corr_count_a++;
|
|
}
|
|
|
|
corr /= (double) corr_count;
|
|
corr -= ( events_a->count - corr_count_a ) / events_a->count;
|
|
/* _dpd.logMsg ( " Number of '%s' alerts correlated to '%s': %u over %u\\n", a->desc, b->desc, corr_count_a, events_a->count ); */
|
|
|
|
if ( found )
|
|
{
|
|
found->correlation = corr;
|
|
found->latest_computation_time = time ( NULL );
|
|
} else {
|
|
if ( !( found = ( AI_bayesian_correlation* ) malloc ( sizeof ( AI_bayesian_correlation ))))
|
|
_dpd.fatalMsg ( "AIPreproc: Fatal dynamic memory allocation error at %s:%d\n", __FILE__, __LINE__ );
|
|
|
|
found->key = bayesian_key;
|
|
found->correlation = corr;
|
|
found->latest_computation_time = time ( NULL );
|
|
}
|
|
|
|
return corr;
|
|
} /* ----- end of function AI_alert_bayesian_correlation ----- */
|
|
|
|
/** @} */
|
|
|