3rd article migration WIP
This commit is contained in:
parent
745f3b7b9c
commit
4d32eca17c
3 changed files with 269 additions and 0 deletions
BIN
static/img/people-detect-2.png
Normal file
BIN
static/img/people-detect-2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 87 KiB |
BIN
static/img/people-detect-3.png
Normal file
BIN
static/img/people-detect-3.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 39 KiB |
|
@ -166,3 +166,272 @@ it shouldn’t be an issue for your model training purposes.
|
|||
|
||||
If you open the web panel (`http://your-host:8008`) you’ll also notice a new tab, represented by the sun icon, that you
|
||||
can use to monitor your camera from a web interface.
|
||||
|
||||
![Thermal camera web panel screenshot](../img/people-detect-2.png)
|
||||
|
||||
You can also monitor the camera directly outside of the webpanel by pointing your browser to
|
||||
`http://your-host:8008/camera/ir/mlx90640/stream?rotate=270&scale_factor=20`.
|
||||
|
||||
Now add a cronjob to your `config.yaml` to take snapshots every minute:
|
||||
|
||||
```yaml
|
||||
cron.ThermalCameraSnapshotCron:
|
||||
cron_expression: '* * * * *'
|
||||
actions:
|
||||
- action: camera.ir.mlx90640.capture
|
||||
args:
|
||||
output_file: "${__import__(’datetime’).datetime.now().strftime(’/your/img/folder/%Y-%m-%d_%H-%M-%S.jpg’)}"
|
||||
grayscale: true
|
||||
```
|
||||
|
||||
Or directly as a Python script under e.g. `~/.config/platypush/thermal.py` (make sure that `~/.config/platypush/__init__.py` also exists so the folder is recognized as a Python module):
|
||||
|
||||
```python
|
||||
from datetime import datetime
|
||||
|
||||
from platypush.config import Config
|
||||
from platypush.cron import cron
|
||||
from platypush.utils import run
|
||||
|
||||
|
||||
@cron('* * * * *')
|
||||
def take_thermal_picture(**context):
|
||||
run('camera.ir.mlx90640.capture', grayscale=True,
|
||||
output_file=datetime.now().strftime('/your/img/folder/%Y-%m-%d_%H-%m-%S.jpg'))
|
||||
```
|
||||
|
||||
The images will be stored under `/your/img/folder` in the format
|
||||
`YYYY-mm-dd_HH-MM-SS.jpg`. No scale factor is applied — even if the images will
|
||||
be tiny we’ll only need them to train our model. Also, we’ll convert the images
|
||||
to grayscale — the neural network will be lighter and actually more accurate,
|
||||
as it will only have to rely on one variable per pixel without being tricked by
|
||||
RGB combinations.
|
||||
|
||||
Restart Platypush and verify that every minute a new picture is created under
|
||||
your images directory. Let it run for a few hours or days until you’re happy
|
||||
with the number of samples. Try to balance the numbers of pictures with no
|
||||
people in the room and those with people in the room, trying to cover as many
|
||||
cases as possible — e.g. sitting, standing in different points of the room etc.
|
||||
As I mentioned earlier, in my case I only needed less than 1000 pictures with
|
||||
enough variety to achieve accuracy levels above 99%.
|
||||
|
||||
## Labelling phase
|
||||
|
||||
Once you’re happy with the number of samples you’ve taken, copy the images over
|
||||
to the machine you’ll be using to train your model (they should be all small
|
||||
JPEG files weighing under 500 bytes each). Copy them to the folder where you
|
||||
have cloned my `imgdetect-utils` repository:
|
||||
|
||||
```shell
|
||||
BASEDIR=~/git_tree/imgdetect-utils
|
||||
|
||||
# This directory will contain your raw images
|
||||
IMGDIR=$BASEDIR/datasets/ir/images
|
||||
|
||||
# This directory will contain the raw numpy training
|
||||
# data parsed from the images
|
||||
DATADIR=$BASEDIR/datasets/ir/data
|
||||
|
||||
mkdir -p $IMGDIR
|
||||
mkdir -p $DATADIR
|
||||
|
||||
# Copy the images
|
||||
scp pi@raspberry:/your/img/folder/*.jpg $IMGDIR
|
||||
|
||||
# Create the labels for the images. Each label is a
|
||||
# directory under $IMGDIR
|
||||
mkdir $IMGDIR/negative
|
||||
mkdir $IMGDIR/positive
|
||||
```
|
||||
|
||||
Once the images have been copied and the directories for the labels created,
|
||||
run the `label.py` script provided in the repository to interactively label the
|
||||
images:
|
||||
|
||||
```shell
|
||||
cd $BASEDIR
|
||||
python utils/label.py -d $IMGDIR --scale-factor 10
|
||||
```
|
||||
|
||||
Each image will open in a new window and you can label it by typing either 1
|
||||
(negative) or 2 (positive) - the label names are gathered from the names of the
|
||||
directories you created at the previous step:
|
||||
|
||||
![Thermal camera pictures labelling](../img/people-detect-3.png)
|
||||
|
||||
At the end of the procedure the `negative` and `positive` directories under the
|
||||
images directory should have been populated.
|
||||
|
||||
## Training phase
|
||||
|
||||
Once we’ve got all the labelled images it’s time to train our model. A
|
||||
[`train.ipynb`](https://github.com/BlackLight/imgdetect-utils/blob/master/notebooks/ir/train.ipynb)
|
||||
Jupyter notebook is provided under `notebooks/ir` and it should be
|
||||
relatively self-explanatory:
|
||||
|
||||
```python
|
||||
### Import stuff
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
|
||||
######
|
||||
# Change this with the directory where you cloned the imgdetect-utils repo
|
||||
basedir = os.path.join(os.path.expanduser('~'), 'git_tree', 'imgdetect-utils')
|
||||
sys.path.append(os.path.join(basedir))
|
||||
|
||||
from src.image_helpers import plot_images_grid, create_dataset_files
|
||||
from src.train_helpers import load_data, plot_results, export_model
|
||||
|
||||
# Define the dataset directory - replace it with the path on your local
|
||||
# machine where you have stored the previously labelled dataset.
|
||||
dataset_dir = os.path.join(basedir, 'datasets', 'ir')
|
||||
|
||||
# Define the size of the input images. In the case of an
|
||||
# MLX90640 it will be (24, 32) for horizontal images and
|
||||
# (32, 24) for vertical images
|
||||
image_size = (32, 24)
|
||||
|
||||
# Image generator batch size
|
||||
batch_size = 64
|
||||
|
||||
# Number of training epochs
|
||||
epochs = 5
|
||||
######
|
||||
|
||||
# The Tensorflow model and properties file will be stored here
|
||||
tf_model_dir = os.path.join(basedir, 'models', 'ir', 'tensorflow')
|
||||
tf_model_file = os.path.join(tf_model_dir, 'ir.pb')
|
||||
tf_properties_file = os.path.join(tf_model_dir, 'ir.json')
|
||||
|
||||
# Base directory that contains your training images and dataset files
|
||||
dataset_base_dir = os.path.join(basedir, 'datasets', 'ir')
|
||||
dataset_dir = os.path.join(dataset_base_dir, 'data')
|
||||
|
||||
# Store your thermal camera images here
|
||||
img_dir = os.path.join(dataset_base_dir, 'images')
|
||||
|
||||
### Create model directories
|
||||
|
||||
os.makedirs(tf_model_dir, mode=0o775, exist_ok=True)
|
||||
|
||||
### Create a dataset files from the available images
|
||||
|
||||
dataset_files = create_dataset_files(img_dir, dataset_dir,
|
||||
split_size=1000,
|
||||
num_threads=1,
|
||||
resize=input_size)
|
||||
|
||||
### Or load existing .npz dataset files
|
||||
|
||||
|
||||
|
||||
dataset_files = [os.path.join(dataset_dir, f)
|
||||
for f in os.listdir(dataset_dir)
|
||||
if os.path.isfile(os.path.join(dataset_dir, f))
|
||||
and f.endswith('.npz')]
|
||||
|
||||
### Get the training and test set randomly out of the dataset with a split of 70/30
|
||||
|
||||
train_set, test_set, classes = load_data(*dataset_files, split_percentage=0.7)
|
||||
print('Loaded {} training images and {} test images. Classes: {}'.format(
|
||||
train_set.shape[0], test_set.shape[0], classes))
|
||||
|
||||
# Example output:
|
||||
# Loaded 623 training images and 267 test images. Classes: ['negative' 'positive']
|
||||
|
||||
# Extract training set and test set images and labels
|
||||
train_images = np.asarray([item[0] for item in train_set])
|
||||
train_labels = np.asarray([item[1] for item in train_set])
|
||||
test_images = np.asarray([item[0] for item in test_set])
|
||||
test_labels = np.asarray([item[1] for item in test_set])
|
||||
|
||||
### Inspect the first 25 images in the training set
|
||||
|
||||
plot_images_grid(images=train_images, labels=train_labels,
|
||||
classes=classes, rows=5, cols=5)
|
||||
|
||||
### Declare the model
|
||||
|
||||
# - Flatten input
|
||||
# - Layer 1: 50% the number of pixels per image (RELU activation)
|
||||
# - Layer 2: 20% the number of pixels per image (RELU activation)
|
||||
# - Layer 3: as many neurons as the output labels
|
||||
# (in this case 2: negative, positive) (Softmax activation)
|
||||
|
||||
model = keras.Sequential([
|
||||
keras.layers.Flatten(input_shape=train_images[0].shape),
|
||||
keras.layers.Dense(int(0.5 * train_images.shape[1] * train_images.shape[2]),
|
||||
activation=tf.nn.relu),
|
||||
keras.layers.Dense(int(0.2 * train_images.shape[1] * train_images.shape[2]),
|
||||
activation=tf.nn.relu),
|
||||
keras.layers.Dense(len(classes), activation=tf.nn.softmax)
|
||||
])
|
||||
|
||||
### Compile the model
|
||||
|
||||
# - Loss function:This measures how accurate the model is during training. We
|
||||
# want to minimize this function to "steer" the model in the right direction.
|
||||
# - Optimizer: This is how the model is updated based on the data it sees and
|
||||
# its loss function.
|
||||
# - Metrics: Used to monitor the training and testing steps. The following
|
||||
# example uses accuracy, the fraction of the images that are correctly classified.
|
||||
|
||||
model.compile(optimizer='adam',
|
||||
loss='sparse_categorical_crossentropy',
|
||||
metrics=['accuracy'])
|
||||
|
||||
### Train the model
|
||||
|
||||
model.fit(train_images, train_labels, epochs=3)
|
||||
|
||||
# Example output:
|
||||
# Epoch 1/3 623/623 [======] - 0s 487us/sample - loss: 0.2672 - acc: 0.8860
|
||||
# Epoch 2/3 623/623 [======] - 0s 362us/sample - loss: 0.0247 - acc: 0.9936
|
||||
# Epoch 3/3 623/623 [======] - 0s 373us/sample - loss: 0.0083 - acc: 0.9984
|
||||
|
||||
### Evaluate accuracy against the test set
|
||||
|
||||
test_loss, test_acc = model.evaluate(test_images, test_labels)
|
||||
print('Test accuracy:', test_acc)
|
||||
|
||||
# Example output:
|
||||
# 267/267 [======] - 0s 243us/sample - loss: 0.0096 - acc: 0.9963
|
||||
# Test accuracy: 0.9962547
|
||||
|
||||
### Make predictions on the test set
|
||||
|
||||
predictions = model.predict(test_images)
|
||||
|
||||
# Plot a grid of 36 images and show expected vs. predicted values
|
||||
plot_results(images=test_images, labels=test_labels,
|
||||
classes=classes, predictions=predictions,
|
||||
rows=9, cols=4)
|
||||
|
||||
### Export as a Tensorflow model
|
||||
|
||||
export_model(model, tf_model_file,
|
||||
properties_file=tf_properties_file,
|
||||
classes=classes,
|
||||
input_size=input_size)
|
||||
```
|
||||
|
||||
If you managed to execute the whole notebook correctly you’ll have a file named
|
||||
`ir.pb` under `models/ir/tensorflow`. That’s your Tensorflow model file, you can
|
||||
now copy it over to the RaspberryPi and use it to do predictions:
|
||||
|
||||
```shell
|
||||
scp $BASEDIR/models/ir/tensorflow/ir.pb pi@raspberry:/home/pi/models
|
||||
```
|
||||
|
||||
## Detect people in the room
|
||||
|
||||
Once the Tensorflow model has been deployed to the RaspberryPi you can replace the
|
||||
previous cronjob that stores pictures at regular intervals with a cronjob that captures
|
||||
pictures and feeds them to the previously trained model
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue