Migrated third article
This commit is contained in:
parent
4d32eca17c
commit
688d0c152c
3 changed files with 284 additions and 164 deletions
BIN
static/img/people-detect-4.png
Normal file
BIN
static/img/people-detect-4.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 59 KiB |
BIN
static/img/people-detect-5.png
Normal file
BIN
static/img/people-detect-5.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 13 KiB |
|
@ -103,6 +103,20 @@ Install also the Python dependencies for the HTTP server, the MLX90640 plugin an
|
|||
[sudo] pip install 'platypush[http,tensorflow,mlx90640]'
|
||||
```
|
||||
|
||||
Tensorflow may also require some additional dependencies installable via `apt-get`:
|
||||
|
||||
```shell
|
||||
[sudo] apt-get install python3-numpy \
|
||||
libatlas-base-dev \
|
||||
libblas-dev \
|
||||
liblapack-dev \
|
||||
python3-dev \
|
||||
gfortran \
|
||||
python3-setuptools \
|
||||
python3-scipy \
|
||||
python3-h5py
|
||||
```
|
||||
|
||||
Heading to your computer (we'll be using it for building the model that will be used on the RaspberryPi), install
|
||||
OpenCV, Tensorflow and Jupyter and my utilities for handling images:
|
||||
|
||||
|
@ -119,10 +133,10 @@ OpenCV, Tensorflow and Jupyter and my utilities for handling images:
|
|||
|
||||
# Clone my repository with the image and training utilities
|
||||
# and the Jupyter notebooks that we'll use for training.
|
||||
git clone https://github.com/BlackLight/imgdetect-utils
|
||||
git clone https://github.com/BlackLight/imgdetect-utils ~/projects/imgdetect-utils
|
||||
```
|
||||
|
||||
## Capturing phase
|
||||
## Capture phase
|
||||
|
||||
Now that you’ve got all the hardware and software in place, it’s time to start capturing frames with your camera and use
|
||||
them to train your model. First, configure
|
||||
|
@ -152,7 +166,7 @@ curl -XPOST -H 'Content-Type: application/json' -d '
|
|||
"output_file":"~/snap.png",
|
||||
"scale_factor":20
|
||||
}
|
||||
}' -a 'username:password' http://localhost:8008/execute
|
||||
}' -u 'username:password' http://localhost:8008/execute
|
||||
```
|
||||
|
||||
If everything went well, the thermal picture should be stored under `~/snap.png`. In my case it looks like this while
|
||||
|
@ -180,7 +194,7 @@ cron.ThermalCameraSnapshotCron:
|
|||
actions:
|
||||
- action: camera.ir.mlx90640.capture
|
||||
args:
|
||||
output_file: "${__import__(’datetime’).datetime.now().strftime(’/your/img/folder/%Y-%m-%d_%H-%M-%S.jpg’)}"
|
||||
output_file: "${__import__(’datetime’).datetime.now().strftime(’/home/pi/datasets/people_detect/images/%Y-%m-%d_%H-%M-%S.jpg’)}"
|
||||
grayscale: true
|
||||
```
|
||||
|
||||
|
@ -189,7 +203,6 @@ Or directly as a Python script under e.g. `~/.config/platypush/thermal.py` (make
|
|||
```python
|
||||
from datetime import datetime
|
||||
|
||||
from platypush.config import Config
|
||||
from platypush.cron import cron
|
||||
from platypush.utils import run
|
||||
|
||||
|
@ -197,15 +210,14 @@ from platypush.utils import run
|
|||
@cron('* * * * *')
|
||||
def take_thermal_picture(**context):
|
||||
run('camera.ir.mlx90640.capture', grayscale=True,
|
||||
output_file=datetime.now().strftime('/your/img/folder/%Y-%m-%d_%H-%m-%S.jpg'))
|
||||
output_file=datetime.now().strftime('/home/pi/datasets/people_detect/images/%Y-%m-%d_%H-%m-%S.jpg'))
|
||||
```
|
||||
|
||||
The images will be stored under `/your/img/folder` in the format
|
||||
`YYYY-mm-dd_HH-MM-SS.jpg`. No scale factor is applied — even if the images will
|
||||
be tiny we’ll only need them to train our model. Also, we’ll convert the images
|
||||
to grayscale — the neural network will be lighter and actually more accurate,
|
||||
as it will only have to rely on one variable per pixel without being tricked by
|
||||
RGB combinations.
|
||||
The images will be stored under `/home/pi/datasets/people_detect/images` (make sure that the directory exists before starting
|
||||
the service) in the format `YYYY-mm-dd_HH-MM-SS.jpg`. No scale factor is applied — even if the images will be tiny we’ll
|
||||
only need them to train our model. Also, we’ll convert the images to grayscale — the neural network will be lighter and
|
||||
actually more accurate, as it will only have to rely on one variable per pixel without being tricked by RGB
|
||||
combinations.
|
||||
|
||||
Restart Platypush and verify that every minute a new picture is created under
|
||||
your images directory. Let it run for a few hours or days until you’re happy
|
||||
|
@ -219,38 +231,39 @@ enough variety to achieve accuracy levels above 99%.
|
|||
|
||||
Once you’re happy with the number of samples you’ve taken, copy the images over
|
||||
to the machine you’ll be using to train your model (they should be all small
|
||||
JPEG files weighing under 500 bytes each). Copy them to the folder where you
|
||||
have cloned my `imgdetect-utils` repository:
|
||||
JPEG files weighing under 500 bytes each). Copy them to your local machine:
|
||||
|
||||
```shell
|
||||
BASEDIR=~/git_tree/imgdetect-utils
|
||||
|
||||
# This directory will contain your raw images
|
||||
IMGDIR=$BASEDIR/datasets/ir/images
|
||||
|
||||
# This directory will contain the raw numpy training
|
||||
# data parsed from the images
|
||||
DATADIR=$BASEDIR/datasets/ir/data
|
||||
|
||||
mkdir -p $IMGDIR
|
||||
mkdir -p $DATADIR
|
||||
BASEDIR=~/datasets/people_detect
|
||||
mkdir -p "$BASEDIR"
|
||||
|
||||
# Copy the images
|
||||
scp pi@raspberry:/your/img/folder/*.jpg $IMGDIR
|
||||
scp -r pi@raspberry:/home/pi/datasets/people_detect ~
|
||||
IMGDIR="$BASEDIR/images"
|
||||
|
||||
# This directory will contain the raw numpy training
|
||||
# data parsed from the images (useful if you want to
|
||||
# re-train the model without having to reprocess all
|
||||
# the images)
|
||||
DATADIR="$BASEDIR/data"
|
||||
|
||||
mkdir -p "$IMGDIR"
|
||||
mkdir -p "$DATADIR"
|
||||
|
||||
# Create the labels for the images. Each label is a
|
||||
# directory under $IMGDIR
|
||||
mkdir $IMGDIR/negative
|
||||
mkdir $IMGDIR/positive
|
||||
mkdir "$IMGDIR/negative"
|
||||
mkdir "$IMGDIR/positive"
|
||||
```
|
||||
|
||||
Once the images have been copied and the directories for the labels created,
|
||||
Once the images have been copied, and the directories for the labels created,
|
||||
run the `label.py` script provided in the repository to interactively label the
|
||||
images:
|
||||
|
||||
```shell
|
||||
cd $BASEDIR
|
||||
python utils/label.py -d $IMGDIR --scale-factor 10
|
||||
UTILS_DIR=~/projects/imgdetect-utils
|
||||
cd "$UTILS_DIR"
|
||||
python utils/label.py -d "$IMGDIR" --scale-factor 10
|
||||
```
|
||||
|
||||
Each image will open in a new window and you can label it by typing either 1
|
||||
|
@ -270,27 +283,18 @@ Jupyter notebook is provided under `notebooks/ir` and it should be
|
|||
relatively self-explanatory:
|
||||
|
||||
```python
|
||||
### Import stuff
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
|
||||
######
|
||||
# Change this with the directory where you cloned the imgdetect-utils repo
|
||||
basedir = os.path.join(os.path.expanduser('~'), 'git_tree', 'imgdetect-utils')
|
||||
sys.path.append(os.path.join(basedir))
|
||||
|
||||
from src.image_helpers import plot_images_grid, create_dataset_files
|
||||
from src.train_helpers import load_data, plot_results, export_model
|
||||
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
||||
|
||||
# Define the dataset directory - replace it with the path on your local
|
||||
# machine where you have stored the previously labelled dataset.
|
||||
dataset_dir = os.path.join(basedir, 'datasets', 'ir')
|
||||
dataset_dir = os.path.join(os.path.expanduser('~'), 'datasets', 'people_detect')
|
||||
|
||||
# Define the size of the input images. In the case of an
|
||||
# MLX90640 it will be (24, 32) for horizontal images and
|
||||
|
@ -302,136 +306,252 @@ batch_size = 64
|
|||
|
||||
# Number of training epochs
|
||||
epochs = 5
|
||||
######
|
||||
|
||||
# The Tensorflow model and properties file will be stored here
|
||||
tf_model_dir = os.path.join(basedir, 'models', 'ir', 'tensorflow')
|
||||
tf_model_file = os.path.join(tf_model_dir, 'ir.pb')
|
||||
tf_properties_file = os.path.join(tf_model_dir, 'ir.json')
|
||||
# Instantiate a generator that puts 30% of the images into the validation set
|
||||
# and normalizes their pixel values between 0 and 1
|
||||
generator = ImageDataGenerator(rescale=1./255, validation_split=0.3)
|
||||
|
||||
# Base directory that contains your training images and dataset files
|
||||
dataset_base_dir = os.path.join(basedir, 'datasets', 'ir')
|
||||
dataset_dir = os.path.join(dataset_base_dir, 'data')
|
||||
train_data = generator.flow_from_directory(dataset_dir,
|
||||
target_size=image_size,
|
||||
batch_size=batch_size,
|
||||
subset='training',
|
||||
class_mode='categorical',
|
||||
color_mode='grayscale')
|
||||
|
||||
# Store your thermal camera images here
|
||||
img_dir = os.path.join(dataset_base_dir, 'images')
|
||||
|
||||
### Create model directories
|
||||
|
||||
os.makedirs(tf_model_dir, mode=0o775, exist_ok=True)
|
||||
|
||||
### Create a dataset files from the available images
|
||||
|
||||
dataset_files = create_dataset_files(img_dir, dataset_dir,
|
||||
split_size=1000,
|
||||
num_threads=1,
|
||||
resize=input_size)
|
||||
|
||||
### Or load existing .npz dataset files
|
||||
|
||||
|
||||
|
||||
dataset_files = [os.path.join(dataset_dir, f)
|
||||
for f in os.listdir(dataset_dir)
|
||||
if os.path.isfile(os.path.join(dataset_dir, f))
|
||||
and f.endswith('.npz')]
|
||||
|
||||
### Get the training and test set randomly out of the dataset with a split of 70/30
|
||||
|
||||
train_set, test_set, classes = load_data(*dataset_files, split_percentage=0.7)
|
||||
print('Loaded {} training images and {} test images. Classes: {}'.format(
|
||||
train_set.shape[0], test_set.shape[0], classes))
|
||||
|
||||
# Example output:
|
||||
# Loaded 623 training images and 267 test images. Classes: ['negative' 'positive']
|
||||
|
||||
# Extract training set and test set images and labels
|
||||
train_images = np.asarray([item[0] for item in train_set])
|
||||
train_labels = np.asarray([item[1] for item in train_set])
|
||||
test_images = np.asarray([item[0] for item in test_set])
|
||||
test_labels = np.asarray([item[1] for item in test_set])
|
||||
|
||||
### Inspect the first 25 images in the training set
|
||||
|
||||
plot_images_grid(images=train_images, labels=train_labels,
|
||||
classes=classes, rows=5, cols=5)
|
||||
|
||||
### Declare the model
|
||||
|
||||
# - Flatten input
|
||||
# - Layer 1: 50% the number of pixels per image (RELU activation)
|
||||
# - Layer 2: 20% the number of pixels per image (RELU activation)
|
||||
# - Layer 3: as many neurons as the output labels
|
||||
# (in this case 2: negative, positive) (Softmax activation)
|
||||
|
||||
model = keras.Sequential([
|
||||
keras.layers.Flatten(input_shape=train_images[0].shape),
|
||||
keras.layers.Dense(int(0.5 * train_images.shape[1] * train_images.shape[2]),
|
||||
activation=tf.nn.relu),
|
||||
keras.layers.Dense(int(0.2 * train_images.shape[1] * train_images.shape[2]),
|
||||
activation=tf.nn.relu),
|
||||
keras.layers.Dense(len(classes), activation=tf.nn.softmax)
|
||||
])
|
||||
|
||||
### Compile the model
|
||||
|
||||
# - Loss function:This measures how accurate the model is during training. We
|
||||
# want to minimize this function to "steer" the model in the right direction.
|
||||
# - Optimizer: This is how the model is updated based on the data it sees and
|
||||
# its loss function.
|
||||
# - Metrics: Used to monitor the training and testing steps. The following
|
||||
# example uses accuracy, the fraction of the images that are correctly classified.
|
||||
|
||||
model.compile(optimizer='adam',
|
||||
loss='sparse_categorical_crossentropy',
|
||||
metrics=['accuracy'])
|
||||
|
||||
### Train the model
|
||||
|
||||
model.fit(train_images, train_labels, epochs=3)
|
||||
|
||||
# Example output:
|
||||
# Epoch 1/3 623/623 [======] - 0s 487us/sample - loss: 0.2672 - acc: 0.8860
|
||||
# Epoch 2/3 623/623 [======] - 0s 362us/sample - loss: 0.0247 - acc: 0.9936
|
||||
# Epoch 3/3 623/623 [======] - 0s 373us/sample - loss: 0.0083 - acc: 0.9984
|
||||
|
||||
### Evaluate accuracy against the test set
|
||||
|
||||
test_loss, test_acc = model.evaluate(test_images, test_labels)
|
||||
print('Test accuracy:', test_acc)
|
||||
|
||||
# Example output:
|
||||
# 267/267 [======] - 0s 243us/sample - loss: 0.0096 - acc: 0.9963
|
||||
# Test accuracy: 0.9962547
|
||||
|
||||
### Make predictions on the test set
|
||||
|
||||
predictions = model.predict(test_images)
|
||||
|
||||
# Plot a grid of 36 images and show expected vs. predicted values
|
||||
plot_results(images=test_images, labels=test_labels,
|
||||
classes=classes, predictions=predictions,
|
||||
rows=9, cols=4)
|
||||
|
||||
### Export as a Tensorflow model
|
||||
|
||||
export_model(model, tf_model_file,
|
||||
properties_file=tf_properties_file,
|
||||
classes=classes,
|
||||
input_size=input_size)
|
||||
test_data = generator.flow_from_directory(dataset_dir,
|
||||
target_size=image_size,
|
||||
batch_size=batch_size,
|
||||
subset='validation',
|
||||
class_mode='categorical',
|
||||
color_mode='grayscale')
|
||||
```
|
||||
|
||||
If you managed to execute the whole notebook correctly you’ll have a file named
|
||||
`ir.pb` under `models/ir/tensorflow`. That’s your Tensorflow model file, you can
|
||||
now copy it over to the RaspberryPi and use it to do predictions:
|
||||
After initializing the generators, let's take a look at a sample of 25 images from the training set together with their
|
||||
labels:
|
||||
|
||||
```python
|
||||
index_to_label = {
|
||||
index: label
|
||||
for label, index in train_data.class_indices.items()
|
||||
}
|
||||
|
||||
plt.figure(figsize=(10, 10))
|
||||
batch = train_data.next()
|
||||
|
||||
for i in range(min(25, len(batch[0]))):
|
||||
img = batch[0][i]
|
||||
|
||||
label = index_to_label[np.argmax(batch[1][i])]
|
||||
plt.subplot(5, 5, i+1)
|
||||
plt.xticks([])
|
||||
plt.yticks([])
|
||||
plt.grid(False)
|
||||
|
||||
# Note the np.squeeze call - matplotlib can't
|
||||
# process grayscale images unless the extra
|
||||
# 1-sized dimension is removed.
|
||||
plt.imshow(np.squeeze(img))
|
||||
plt.xlabel(label)
|
||||
|
||||
plt.show()
|
||||
```
|
||||
|
||||
You should see an image like this:
|
||||
|
||||
![Thermal camera pictures labelling](../img/people-detect-4.png)
|
||||
|
||||
Let's now declare a model and train it on the given training set:
|
||||
|
||||
```python
|
||||
model = keras.Sequential([
|
||||
# Layer 1: flatten the input images
|
||||
keras.layers.Flatten(input_shape=image_size),
|
||||
# Layer 2: fully-connected layer with 80% the neurons as the input images
|
||||
# and RELU activation function
|
||||
keras.layers.Dense(round(0.8 * image_size[0] * image_size[1]),
|
||||
activation=tf.nn.relu),
|
||||
# Layer 2: fully-connected layer with 30% the neurons as the input images
|
||||
# and RELU activation function
|
||||
keras.layers.Dense(round(0.3 * image_size[0] * image_size[1]),
|
||||
activation=tf.nn.relu),
|
||||
# Layer 3: fully-connected layer with as many units as the output labels
|
||||
# and Softmax activation function
|
||||
keras.layers.Dense(len(train_data.class_indices),
|
||||
activation=tf.nn.softmax)
|
||||
])
|
||||
|
||||
# Compile the model for classification, use the Adam optimizer and pick
|
||||
# accuracy as optimization metric
|
||||
model.compile(loss='categorical_crossentropy',
|
||||
optimizer='adam',
|
||||
metrics=['accuracy'])
|
||||
|
||||
# Train the model in batches
|
||||
history = model.fit(
|
||||
train_data,
|
||||
steps_per_epoch=train_data.samples/batch_size,
|
||||
validation_data=test_data,
|
||||
validation_steps=test_data.samples/batch_size,
|
||||
epochs=epochs
|
||||
)
|
||||
|
||||
# Example output:
|
||||
# Epoch 1/5 loss: 0.2529 - accuracy: 0.9196 - val_loss: 0.0543 - val_accuracy: 0.9834
|
||||
# Epoch 2/5 loss: 0.0572 - accuracy: 0.9801 - val_loss: 0.0213 - val_accuracy: 0.9967
|
||||
# Epoch 3/5 loss: 0.0254 - accuracy: 0.9915 - val_loss: 0.0080 - val_accuracy: 1.0000
|
||||
# Epoch 4/5 loss: 0.0117 - accuracy: 0.9979 - val_loss: 0.0053 - val_accuracy: 0.9967
|
||||
# Epoch 5/5 loss: 0.0058 - accuracy: 1.0000 - val_loss: 0.0046 - val_accuracy: 0.9983
|
||||
```
|
||||
|
||||
We can now see how the accuracy of the model progressed over the iteration:
|
||||
|
||||
```python
|
||||
epochs = history.epoch
|
||||
accuracy = history.history['accuracy']
|
||||
fig = plt.figure()
|
||||
plot = fig.add_subplot()
|
||||
plot.set_xlabel('epoch')
|
||||
plot.set_ylabel('accuracy')
|
||||
plot.plot(epochs, accuracy)
|
||||
```
|
||||
|
||||
The output should look like this:
|
||||
|
||||
![Thermal camera pictures labelling](../img/people-detect-5.png)
|
||||
|
||||
By constraining the problem properly (i.e. translating "detect people in an image" to "infer the presence of people by
|
||||
telling if there are more white halos than usual in a small grayscale image") we have indeed managed to achieve high
|
||||
levels of accuracy both on the training and validation set despite using a relatively small dataset.
|
||||
|
||||
## Deploying the model
|
||||
|
||||
Once you are happy with the model, it's time to save it so it can be deployed to your RaspberryPi for real-time
|
||||
predictions:
|
||||
|
||||
```python
|
||||
def model_save(model, target, labels=None, overwrite=True):
|
||||
import json
|
||||
import pathlib
|
||||
|
||||
# Check if we should save it like a .h5/.pb file or as a directory
|
||||
model_dir = pathlib.Path(target)
|
||||
if str(target).endswith('.h5') or \
|
||||
str(target).endswith('.pb'):
|
||||
model_dir = model_dir.parent
|
||||
|
||||
# Create the model directory if it doesn't exist
|
||||
pathlib.Path(model_dir).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Save the Tensorflow model using the .save method
|
||||
model.save(target, overwrite=overwrite)
|
||||
|
||||
# Save the label names of your model in a separate JSON file
|
||||
if labels:
|
||||
labels_file = os.path.join(model_dir, 'labels.json')
|
||||
with open(labels_file, 'w') as f:
|
||||
f.write(json.dumps(list(labels)))
|
||||
|
||||
model_dir = os.path.expanduser('~/models/people_detect')
|
||||
model_save(model, model_dir,
|
||||
labels=train_data.class_indices.keys(), overwrite=True)
|
||||
```
|
||||
|
||||
If you managed to execute the whole notebook then you’ll have your model saved under `~/models/people_detect`.
|
||||
You can now copy it over to the RaspberryPi and use it to do predictions (first create `~/models` on the RaspberryPi
|
||||
if it's not available already):
|
||||
|
||||
```shell
|
||||
scp $BASEDIR/models/ir/tensorflow/ir.pb pi@raspberry:/home/pi/models
|
||||
scp -r ~/models/people_detect pi@raspberry:/home/pi/models
|
||||
```
|
||||
|
||||
## Detect people in the room
|
||||
|
||||
Once the Tensorflow model has been deployed to the RaspberryPi you can replace the
|
||||
previous cronjob that stores pictures at regular intervals with a cronjob that captures
|
||||
pictures and feeds them to the previously trained model
|
||||
Once the Tensorflow model has been deployed to the RaspberryPi you can quickly test how it performs against some
|
||||
pictures taken on the device using
|
||||
the [`tensorflow.predict`](https://platypush.readthedocs.io/en/latest/platypush/plugins/tensorflow.html#platypush.plugins.tensorflow.TensorflowPlugin.predict)
|
||||
method:
|
||||
|
||||
```shell
|
||||
curl -XPOST -u 'user:pass' -H 'Content-Type: application/json' -d '
|
||||
{
|
||||
"type":"request",
|
||||
"action":"tensorflow.predict",
|
||||
"args": {
|
||||
"inputs": "~/datasets/people_detect/positive/some_image.jpg",
|
||||
"model": "~/models/people_detect"
|
||||
}
|
||||
}' http://your-raspberry-pi:8008/execute
|
||||
```
|
||||
|
||||
Expected output:
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "<response-id>",
|
||||
"type": "response",
|
||||
"target": "http",
|
||||
"origin": "raspberrypi",
|
||||
"response": {
|
||||
"output": {
|
||||
"model": "~/models/people_detect",
|
||||
"outputs": [
|
||||
{
|
||||
"negative": 0,
|
||||
"positive": 1
|
||||
}
|
||||
],
|
||||
"predictions": [
|
||||
"positive"
|
||||
]
|
||||
},
|
||||
"errors": []
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Once the structure of the response is clear, we can replace the previous cronjob that stores pictures at regular
|
||||
intervals with a new one that captures pictures and feeds them to the previously trained model to make predictions (I'll
|
||||
use a Python script stored under `~/.config/platypush/scripts` in this case, but it will also work with a cron defined
|
||||
in YAML in `config.yaml`) and, for example, turns on the lights when presence is detected and turns them off when
|
||||
presence is no longer detected (I'll use
|
||||
the [`light.hue`](https://platypush.readthedocs.io/en/latest/platypush/plugins/light.hue.html) plugin in this example):
|
||||
|
||||
```python
|
||||
import os
|
||||
from platypush.context import get_plugin
|
||||
from platypush.cron import cron
|
||||
|
||||
|
||||
@cron('* * * * * */30')
|
||||
def check_presence(**context):
|
||||
# Get plugins by name
|
||||
camera = get_plugin('camera.ir.mlx90640')
|
||||
tensorflow = get_plugin('tensorflow')
|
||||
lights = get_plugin('light.hue')
|
||||
|
||||
image_file = '/tmp/frame.jpg'
|
||||
model_file = os.path.expanduser('~/models/people_detect/saved_model.h5')
|
||||
camera.capture_image(
|
||||
image_file=image_file, grayscale=True)
|
||||
|
||||
prediction = tensorflow.predict(
|
||||
inputs=image_file, model=model_file)['predictions'][0]
|
||||
|
||||
if prediction == 'positive':
|
||||
lights.on()
|
||||
else:
|
||||
lights.off()
|
||||
```
|
||||
|
||||
Restart the service and let it run. Every 30 seconds the cron will run, take a picture, check if people are detected in
|
||||
that picture and turn the lights on/off accordingly.
|
||||
|
||||
## What's next?
|
||||
|
||||
That’s your call! Feel free to experiment with more elaborate rules, for example to change the status of the music/video
|
||||
playing in the room when someone enters, using Platypush media plugins. Or say a custom good morning text when you first
|
||||
enter the room in the morning. Or build your own surveillance system to track the presence of people when you’re not at
|
||||
home. Or enhance the model to detect also the number of people in the room, not only the presence. Or you can combine it
|
||||
with an optical flow sensor, distance sensor, laser range sensor or optical camera (platypush provides plugins for many
|
||||
of them) to build an even more robust system that also detects and tracks movements or proximity to the sensor, and so
|
||||
on.
|
||||
|
|
Loading…
Add table
Reference in a new issue